Spaces:
Sleeping
Sleeping
File size: 17,494 Bytes
eee7a65 35e1586 95a7e5a 35e1586 9b2f654 31bad44 35e1586 31bad44 35e1586 eee7a65 35e1586 2d991dc 9b2f654 504482b ce93ad2 95a7e5a 554b5f1 31bad44 554b5f1 95a7e5a 504482b 31bad44 eee7a65 31bad44 3b1c99a 31bad44 9b2f654 f377404 9b2f654 31bad44 9b2f654 eee7a65 31bad44 9b2f654 31bad44 9b2f654 eee7a65 31bad44 9b2f654 31bad44 eee7a65 3b1c99a 31bad44 eee7a65 6398daa 134d152 9b2f654 7becdb7 9b2f654 b2bdaba 0a3c7e7 9b2f654 134d152 b2bdaba 9b2f654 134d152 9b2f654 f377404 2d991dc 7becdb7 9b2f654 134d152 f377404 eee7a65 f377404 eee7a65 f377404 eee7a65 35e1586 f377404 31bad44 88b8fb2 14a2032 88b8fb2 f377404 b47b578 f377404 31bad44 88b8fb2 d73cf44 88b8fb2 daacd5c 95a7e5a 31bad44 f377404 95a7e5a 35e1586 504482b eee7a65 504482b 12bd822 88b8fb2 12bd822 504482b 12bd822 504482b f377404 504482b 35e1586 504482b eee7a65 504482b 35e1586 95a7e5a 31bad44 e756bb2 eee7a65 31bad44 f377404 eee7a65 95a7e5a 31bad44 95a7e5a f342c38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
import os
import numpy as np
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from transformers import (
AutoTokenizer,
AutoModelForSeq2SeqLM,
AutoModelForTokenClassification,
AutoModelForCausalLM,
pipeline
)
from sentence_transformers import SentenceTransformer, CrossEncoder
from sklearn.metrics.pairwise import cosine_similarity
from bs4 import BeautifulSoup
import nltk
import torch
import pandas as pd
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file # Import Safetensors loader
from typing import List, Dict, Optional
# Initialize FastAPI app
app = FastAPI()
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Global variables for models and data
models = {}
data = {}
class QueryRequest(BaseModel):
query: str
language_code: int = 0
class MedicalProfile(BaseModel):
chronic_conditions: List[str]
symptoms: List[str]
food_restrictions: List[str]
mental_conditions: List[str]
daily_symptoms: List[str]
class ChatQuery(BaseModel):
query: str
conversation_id: str
class ChatMessage(BaseModel):
role: str
content: str
timestamp: str
def init_nltk():
"""Initialize NLTK resources"""
try:
nltk.download('punkt', quiet=True)
return True
except Exception as e:
print(f"Error initializing NLTK: {e}")
return False
def load_models():
"""Initialize all required models"""
try:
print("Loading models...")
# Set device
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Device set to use {device}")
# Embedding models
models['embedding'] = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
models['cross_encoder'] = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512)
# Translation models
models['ar_to_en_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
models['ar_to_en_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
models['en_to_ar_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
models['en_to_ar_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
# NER model
models['bio_tokenizer'] = AutoTokenizer.from_pretrained("blaze999/Medical-NER")
models['bio_model'] = AutoModelForTokenClassification.from_pretrained("blaze999/Medical-NER")
models['ner_pipeline'] = pipeline("ner", model=models['bio_model'], tokenizer=models['bio_tokenizer'])
# LLM model
model_name = "M4-ai/Orca-2.0-Tau-1.8B"
models['llm_tokenizer'] = AutoTokenizer.from_pretrained(model_name)
models['llm_model'] = AutoModelForCausalLM.from_pretrained(model_name)
print("Models loaded successfully")
return True
except Exception as e:
print(f"Error loading models: {e}")
return False
def load_embeddings() -> Optional[Dict[str, np.ndarray]]:
"""Load embeddings from Safetensors file"""
try:
embeddings_path = 'embeddings.safetensors'
if not os.path.exists(embeddings_path):
embeddings_path = hf_hub_download(
repo_id=os.environ.get('thechaiexperiment/TeaRAG', ''),
filename="embeddings.safetensors",
repo_type="space"
)
embeddings = load_file(embeddings_path)
if not isinstance(embeddings, dict):
raise ValueError("Invalid format for embeddings in Safetensors file.")
# Convert to dictionary with numpy arrays
return {k: tensor.numpy() for k, tensor in embeddings.items()}
except Exception as e:
print(f"Error loading embeddings: {e}")
return None
def load_documents_data():
"""Load document data with error handling"""
try:
print("Loading documents data...")
docs_path = 'finalcleaned_excel_file.xlsx'
if not os.path.exists(docs_path):
print(f"Error: {docs_path} not found")
return False
data['df'] = pd.read_excel(docs_path)
print(f"Successfully loaded {len(data['df'])} document records")
return True
except Exception as e:
print(f"Error loading documents data: {e}")
data['df'] = pd.DataFrame()
return False
def load_data():
"""Load all required data"""
embeddings_success = load_embeddings()
documents_success = load_documents_data()
if not embeddings_success:
print("Warning: Failed to load embeddings, falling back to basic functionality")
if not documents_success:
print("Warning: Failed to load documents data, falling back to basic functionality")
return True
def translate_text(text, source_to_target='ar_to_en'):
"""Translate text between Arabic and English"""
try:
if source_to_target == 'ar_to_en':
tokenizer = models['ar_to_en_tokenizer']
model = models['ar_to_en_model']
else:
tokenizer = models['en_to_ar_tokenizer']
model = models['en_to_ar_model']
inputs = tokenizer(text, return_tensors="pt", truncation=True)
outputs = model.generate(**inputs)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
print(f"Translation error: {e}")
return text
def embed_query_text(query_text):
query_embedding = embedding.encode([query_text])
return query_embedding
def query_embeddings(query_embedding, n_results=5):
"""Find relevant documents using embedding similarity"""
if not data['embeddings']:
return []
try:
doc_ids = list(data['embeddings'].keys())
doc_embeddings = np.array(list(data['embeddings'].values()))
similarities = cosine_similarity(query_embedding, doc_embeddings).flatten()
top_indices = similarities.argsort()[-n_results:][::-1]
return [(doc_ids[i], similarities[i]) for i in top_indices]
except Exception as e:
print(f"Error in query_embeddings: {e}")
return []
def retrieve_document_text(doc_id):
"""Retrieve document text from HTML file"""
try:
file_path = os.path.join('downloaded_articles', doc_id)
if not os.path.exists(file_path):
print(f"Warning: Document file not found: {file_path}")
return ""
with open(file_path, 'r', encoding='utf-8') as file:
soup = BeautifulSoup(file, 'html.parser')
return soup.get_text(separator=' ', strip=True)
except Exception as e:
print(f"Error retrieving document {doc_id}: {e}")
return ""
def rerank_documents(query, doc_texts):
"""Rerank documents using cross-encoder"""
try:
pairs = [(query, doc) for doc in doc_texts]
scores = models['cross_encoder'].predict(pairs)
return scores
except Exception as e:
print(f"Error reranking documents: {e}")
return np.zeros(len(doc_texts))
def extract_entities(text):
"""Extract medical entities from text using NER"""
try:
results = models['ner_pipeline'](text)
return list({result['word'] for result in results if result['entity'].startswith("B-")})
except Exception as e:
print(f"Error extracting entities: {e}")
return []
def match_entities(query_entities, sentence_entities):
query_set, sentence_set = set(query_entities), set(sentence_entities)
matches = query_set.intersection(sentence_set)
return len(matches)
def extract_relevant_portions(document_texts, query, max_portions=3, portion_size=1, min_query_words=1):
relevant_portions = {}
# Extract entities from the query
query_entities = extract_entities(query, ner_biobert)
print(f"Extracted Query Entities: {query_entities}")
for doc_id, doc_text in enumerate(document_texts):
sentences = nltk.sent_tokenize(doc_text) # Split document into sentences
doc_relevant_portions = []
# Extract entities from the entire document
doc_entities = extract_entities(doc_text, ner_biobert)
print(f"Document {doc_id} Entities: {doc_entities}")
for i, sentence in enumerate(sentences):
# Extract entities from the sentence
sentence_entities = extract_entities(sentence, ner_biobert)
# Compute relevance score
relevance_score = match_entities(query_entities, sentence_entities)
# Select sentences with at least `min_query_words` matching entities
if relevance_score >= min_query_words:
start_idx = max(0, i - portion_size // 2)
end_idx = min(len(sentences), i + portion_size // 2 + 1)
portion = " ".join(sentences[start_idx:end_idx])
doc_relevant_portions.append(portion)
if len(doc_relevant_portions) >= max_portions:
break
# Add fallback to include the most entity-dense sentences if no results
if not doc_relevant_portions and len(doc_entities) > 0:
print(f"Fallback: Selecting sentences with most entities for Document {doc_id}")
sorted_sentences = sorted(sentences, key=lambda s: len(extract_entities(s, ner_biobert)), reverse=True)
for fallback_sentence in sorted_sentences[:max_portions]:
doc_relevant_portions.append(fallback_sentence)
relevant_portions[f"Document_{doc_id}"] = doc_relevant_portions
return relevant_portions
def remove_duplicates(selected_parts):
unique_sentences = set()
unique_selected_parts = []
for sentence in selected_parts:
if sentence not in unique_sentences:
unique_selected_parts.append(sentence)
unique_sentences.add(sentence)
return unique_selected_parts
def extract_entities(text):
inputs = biobert_tokenizer(text, return_tensors="pt")
outputs = biobert_model(**inputs)
predictions = torch.argmax(outputs.logits, dim=2)
tokens = biobert_tokenizer.convert_ids_to_tokens(inputs.input_ids[0])
entities = [tokens[i] for i in range(len(tokens)) if predictions[0][i].item() != 0] # Assume 0 is the label for non-entity
return entities
def enhance_passage_with_entities(passage, entities):
# Example: Add entities to the passage for better context
return f"{passage}\n\nEntities: {', '.join(entities)}"
def create_prompt(question, passage):
prompt = ("""
As a medical expert, you are required to answer the following question based only on the provided passage. Do not include any information not present in the passage. Your response should directly reflect the content of the passage. Maintain accuracy and relevance to the provided information.
Passage: {passage}
Question: {question}
Answer:
""")
return prompt.format(passage=passage, question=question)
def generate_answer(prompt, max_length=860, temperature=0.2):
inputs = tokenizer_f(prompt, return_tensors="pt", truncation=True)
# Start timing
start_time = time.time()
output_ids = model_f.generate(
inputs.input_ids,
max_length=max_length,
num_return_sequences=1,
temperature=temperature,
pad_token_id=tokenizer_f.eos_token_id
)
# End timing
end_time = time.time()
# Calculate the duration
duration = end_time - start_time
# Decode the answer
answer = tokenizer_f.decode(output_ids[0], skip_special_tokens=True)
passage_keywords = set(passage.lower().split())
answer_keywords = set(answer.lower().split())
if passage_keywords.intersection(answer_keywords):
return answer, duration
else:
return "Sorry, I can't help with that.", duration
def remove_answer_prefix(text):
prefix = "Answer:"
if prefix in text:
return text.split(prefix)[-1].strip()
return text
def remove_incomplete_sentence(text):
# Check if the text ends with a period
if not text.endswith('.'):
# Find the last period or the end of the string
last_period_index = text.rfind('.')
if last_period_index != -1:
# Remove everything after the last period
return text[:last_period_index + 1].strip()
return text
@app.get("/")
async def root():
return {"message": "Welcome to the FastAPI application! Use the /health endpoint to check health, and /api/query for processing queries."}
@app.get("/health")
async def health_check():
"""Health check endpoint"""
status = {
'status': 'healthy',
'models_loaded': bool(models),
'embeddings_loaded': bool(data.get('embeddings')),
'documents_loaded': not data.get('df', pd.DataFrame()).empty
}
return status
@app.post("/api/chat")
async def chat_endpoint(chat_query: ChatQuery):
try:
query_text = chat_query.query
query_embedding = embed_query_text(query_text)
initial_results = query_embeddings(query_embedding, embeddings_data, n_results=5)
document_ids = [doc_id for doc_id, _ in initial_results]
document_texts = retrieve_document_texts(document_ids, folder_path)
flattened_relevant_portions = []
for doc_id, portions in relevant_portions.items():
flattened_relevant_portions.extend(portions)
unique_selected_parts = remove_duplicates(flattened_relevant_portions)
combined_parts = " ".join(unique_selected_parts)
context = [query_text] + unique_selected_parts
entities = extract_entities(query_text)
passage = enhance_passage_with_entities(combined_parts, entities)
prompt = create_prompt(query_text, passage)
answer, generation_time = generate_answer(prompt)
answer_part = answer.split("Answer:")[-1].strip()
cleaned_answer = remove_answer_prefix(answer_part)
final_answer = remove_incomplete_sentence(cleaned_answer)
return {
"response": final_answer,
"conversation_id": chat_query.conversation_id,
"success": True
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/resources")
async def resources_endpoint(profile: MedicalProfile):
try:
context = f"""
Medical conditions: {', '.join(profile.chronic_conditions)}
Current symptoms: {', '.join(profile.daily_symptoms)}
Restrictions: {', '.join(profile.food_restrictions)}
Mental health: {', '.join(profile.mental_conditions)}
"""
query_embedding = models['embedding'].encode([context])
relevant_docs = query_embeddings(query_embedding)
doc_texts = [retrieve_document_text(doc_id) for doc_id, _ in relevant_docs]
doc_texts = [text for text in doc_texts if text.strip()]
rerank_scores = rerank_documents(context, doc_texts)
ranked_docs = sorted(zip(relevant_docs, rerank_scores, doc_texts), key=lambda x: x[1], reverse=True)
resources = []
for (doc_id, _), score, text in ranked_docs[:10]:
doc_info = data['df'][data['df']['id'] == doc_id].iloc[0]
resources.append({
"id": doc_id,
"title": doc_info['title'],
"content": text[:200],
"score": float(score)
})
return {"resources": resources, "success": True}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/recipes")
async def recipes_endpoint(profile: MedicalProfile):
try:
recipe_query = f"Recipes and meals suitable for someone with: {', '.join(profile.chronic_conditions + profile.food_restrictions)}"
query_embedding = models['embedding'].encode([recipe_query])
relevant_docs = query_embeddings(query_embedding)
doc_texts = [retrieve_document_text(doc_id) for doc_id, _ in relevant_docs]
doc_texts = [text for text in doc_texts if text.strip()]
rerank_scores = rerank_documents(recipe_query, doc_texts)
ranked_docs = sorted(zip(relevant_docs, rerank_scores, doc_texts), key=lambda x: x[1], reverse=True)
recipes = []
for (doc_id, _), score, text in ranked_docs[:10]:
doc_info = data['df'][data['df']['id'] == doc_id].iloc[0]
if 'recipe' in text.lower() or 'meal' in text.lower():
recipes.append({
"id": doc_id,
"title": doc_info['title'],
"content": text[:200],
"score": float(score)
})
return {"recipes": recipes[:5], "success": True}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# Initialize application
print("Initializing application...")
init_success = load_models() and load_data()
if not init_success:
print("Warning: Application initialized with partial functionality")
# For running locally
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|