File size: 18,032 Bytes
35e1586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
629c5b2
 
35e1586
 
 
 
2a5cca5
 
 
554b5f1
3b1c99a
 
554b5f1
 
 
 
 
 
 
3b1c99a
 
1a71739
3b1c99a
9b4d106
3b1c99a
 
 
 
1a71739
3b1c99a
 
7004832
3b1c99a
 
1a71739
554b5f1
3b1c99a
554b5f1
 
 
9b4d106
554b5f1
3b1c99a
 
 
 
 
 
 
 
 
 
554b5f1
 
3b1c99a
 
 
 
 
 
 
 
554b5f1
3b1c99a
 
 
 
 
 
 
 
554b5f1
3b1c99a
 
 
 
 
9b4d106
3b1c99a
 
554b5f1
3b1c99a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
554b5f1
2a5cca5
9b4d106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a5cca5
9b4d106
35e1586
2a5cca5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
554b5f1
1a71739
3b1c99a
b2cd2f5
 
3b1c99a
554b5f1
3b1c99a
 
 
 
 
9b4d106
b2cd2f5
9b4d106
 
 
 
 
 
 
2a5cca5
b2cd2f5
 
 
2a5cca5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2cd2f5
9b4d106
b2cd2f5
 
9b4d106
 
 
1a71739
35e1586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56b03dc
 
 
 
 
 
 
 
35e1586
56b03dc
 
 
 
 
 
 
35e1586
 
56b03dc
 
35e1586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a5cca5
 
 
 
35e1586
 
dc82676
ba32265
dc82676
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List, Optional, Dict
import pickle
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer, CrossEncoder, util
from bs4 import BeautifulSoup
import os
import nltk
import torch
from transformers import (
    AutoTokenizer, 
    BartForConditionalGeneration,
    AutoModelForCausalLM,
    AutoModelForSeq2SeqLM,
    AutoModelForTokenClassification
)
import pandas as pd
import time

# Initialize FastAPI app first
app = FastAPI()

class ArticleEmbeddingUnpickler(pickle.Unpickler):
    """Custom unpickler for article embeddings with enhanced persistence handling"""
    def find_class(self, module: str, name: str) -> Any:
        if module == 'numpy':
            return getattr(np, name)
        if module == 'sentence_transformers.SentenceTransformer':
            from sentence_transformers import SentenceTransformer
            return SentenceTransformer
        return super().find_class(module, name)
    
    def persistent_load(self, pid: Any) -> str:
        """Enhanced persistent ID handler with better encoding management"""
        try:
            # Handle different types of persistent IDs
            if isinstance(pid, bytes):
                return pid.decode('utf-8', errors='replace')
            if isinstance(pid, (str, int, float)):
                return str(pid)
            return repr(pid)
        except Exception as e:
            print(f"Warning: Error in persistent_load: {str(e)}")
            return repr(pid)

def safe_load_embeddings(file_path: str = 'embeddings.pkl') -> Dict[str, np.ndarray]:
    """Load embeddings with enhanced error handling and validation"""
    try:
        if not os.path.exists(file_path):
            raise FileNotFoundError(f"Embeddings file not found at {file_path}")

        with open(file_path, 'rb') as file:
            unpickler = ArticleEmbeddingUnpickler(file)
            embeddings_data = unpickler.load()

        if not isinstance(embeddings_data, dict):
            raise ValueError(f"Invalid data structure: expected dict, got {type(embeddings_data)}")

        # Process and validate embeddings
        valid_embeddings = {}
        for key, value in embeddings_data.items():
            try:
                # Ensure key is a valid string
                key_str = str(key).strip()
                if not key_str:
                    continue

                # Convert value to numpy array if needed
                if isinstance(value, list):
                    value = np.array(value, dtype=np.float32)
                elif isinstance(value, np.ndarray):
                    value = value.astype(np.float32)
                else:
                    print(f"Skipping invalid embedding type for key {key_str}: {type(value)}")
                    continue

                # Validate array dimensions and values
                if value.ndim != 1:
                    print(f"Skipping invalid embedding shape for key {key_str}: {value.shape}")
                    continue
                
                if np.isnan(value).any() or np.isinf(value).any():
                    print(f"Skipping embedding with invalid values for key {key_str}")
                    continue

                valid_embeddings[key_str] = value

            except Exception as e:
                print(f"Error processing embedding for key {key}: {str(e)}")
                continue

        if not valid_embeddings:
            raise ValueError("No valid embeddings found in file")

        print(f"Successfully loaded {len(valid_embeddings)} valid embeddings")
        return valid_embeddings

    except Exception as e:
        print(f"Error loading embeddings: {str(e)}")
        raise
        
def safe_save_embeddings(embeddings_dict, file_path='embeddings.pkl'):
    # Convert all keys to ASCII-safe strings
    cleaned_embeddings = {
        str(key).encode('ascii', errors='replace').decode('ascii'): value
        for key, value in embeddings_dict.items()
    }
    
    with open(file_path, 'wb') as f:
        pickle.dump(cleaned_embeddings, f, protocol=0)

# Models and data structures
class GlobalModels:
    embedding_model = None
    cross_encoder = None
    semantic_model = None
    tokenizer = None
    model = None
    tokenizer_f = None
    model_f = None
    ar_to_en_tokenizer = None
    ar_to_en_model = None
    en_to_ar_tokenizer = None
    en_to_ar_model = None
    embeddings_data = None
    file_name_to_url = None
    bio_tokenizer = None
    bio_model = None

# Initialize global models
global_models = GlobalModels()

# Download NLTK data
nltk.download('punkt')

# Pydantic models for request validation
class QueryInput(BaseModel):
    query_text: str
    language_code: int  # 0 for Arabic, 1 for English
    query_type: str    # "profile" or "question"
    previous_qa: Optional[List[Dict[str, str]]] = None

class DocumentResponse(BaseModel):
    title: str
    url: str
    text: str
    score: float

# Modified startup event handler
@app.on_event("startup")
@app.on_event("startup")
async def load_models():
    try:
        print("Starting to load embeddings...")
        embeddings_data = safe_load_embeddings()
        print(f"Embeddings data type: {type(embeddings_data)}")
        if embeddings_data:
            print(f"Number of embeddings: {len(embeddings_data)}")
            # Print sample of keys
            print("Sample keys:", list(embeddings_data.keys())[:3])
        # Load embedding models first
        global_models.embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
        
        # Load embeddings data with new safe loader
        embeddings_data = safe_load_embeddings()
        if embeddings_data is None:
            raise HTTPException(status_code=500, detail="Failed to load embeddings data")
        global_models.embeddings_data = embeddings_data
        
        # Load remaining models
        global_models.cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512)
        global_models.semantic_model = SentenceTransformer('all-MiniLM-L6-v2')

        # Load BART models
        global_models.tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base")
        global_models.model = BartForConditionalGeneration.from_pretrained("facebook/bart-base")

        # Load Orca model
        model_name = "M4-ai/Orca-2.0-Tau-1.8B"
        global_models.tokenizer_f = AutoTokenizer.from_pretrained(model_name)
        global_models.model_f = AutoModelForCausalLM.from_pretrained(model_name)

        # Load translation models
        global_models.ar_to_en_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
        global_models.ar_to_en_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
        global_models.en_to_ar_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
        global_models.en_to_ar_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar")

        # Load Medical NER models
        global_models.bio_tokenizer = AutoTokenizer.from_pretrained("blaze999/Medical-NER")
        global_models.bio_model = AutoModelForTokenClassification.from_pretrained("blaze999/Medical-NER")
        
        # Load URL mapping data
        try:
            df = pd.read_excel('finalcleaned_excel_file.xlsx')
            global_models.file_name_to_url = {f"article_{index}.html": url for index, url in enumerate(df['Unnamed: 0'])}
        except Exception as e:
            print(f"Error loading URL mapping data: {e}")
            raise HTTPException(status_code=500, detail="Failed to load URL mapping data.")
        
        print("All models loaded successfully")
        
    except Exception as e:
        print(f"Error during startup: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Failed to initialize application: {str(e)}")

    
# Models and data structures to store loaded models
class GlobalModels:
    embedding_model = None
    cross_encoder = None
    semantic_model = None
    tokenizer = None
    model = None
    tokenizer_f = None
    model_f = None
    ar_to_en_tokenizer = None
    ar_to_en_model = None
    en_to_ar_tokenizer = None
    en_to_ar_model = None
    embeddings_data = None
    file_name_to_url = None
    bio_tokenizer = None
    bio_model = None

global_models = GlobalModels()

# Download NLTK data
nltk.download('punkt')

# Pydantic models for request validation
class QueryInput(BaseModel):
    query_text: str
    language_code: int  # 0 for Arabic, 1 for English
    query_type: str    # "profile" or "question"
    previous_qa: Optional[List[Dict[str, str]]] = None

class DocumentResponse(BaseModel):
    title: str
    url: str
    text: str
    score: float

@app.on_event("startup")
async def load_models():
    """Initialize all models and data on startup"""
    try:
        # Load embedding models
        global_models.embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
        global_models.cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512)
        global_models.semantic_model = SentenceTransformer('all-MiniLM-L6-v2')

        # Load BART models
        global_models.tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base")
        global_models.model = BartForConditionalGeneration.from_pretrained("facebook/bart-base")

        # Load Orca model
        model_name = "M4-ai/Orca-2.0-Tau-1.8B"
        global_models.tokenizer_f = AutoTokenizer.from_pretrained(model_name)
        global_models.model_f = AutoModelForCausalLM.from_pretrained(model_name)

        # Load translation models
        global_models.ar_to_en_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
        global_models.ar_to_en_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
        global_models.en_to_ar_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
        global_models.en_to_ar_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar")

        # Load Medical NER models
        global_models.bio_tokenizer = AutoTokenizer.from_pretrained("blaze999/Medical-NER")
        global_models.bio_model = AutoModelForTokenClassification.from_pretrained("blaze999/Medical-NER")

        # Load embeddings data with better error handling
        try:
            with open('embeddings.pkl', 'rb') as file:
                global_models.embeddings_data = pickle.load(file)
        except (FileNotFoundError, pickle.UnpicklingError) as e:
            print(f"Error loading embeddings data: {e}")
            raise HTTPException(status_code=500, detail="Failed to load embeddings data.")
        
        # Load URL mapping data
        try:
            df = pd.read_excel('finalcleaned_excel_file.xlsx')
            global_models.file_name_to_url = {f"article_{index}.html": url for index, url in enumerate(df['Unnamed: 0'])}
        except Exception as e:
            print(f"Error loading URL mapping data: {e}")
            raise HTTPException(status_code=500, detail="Failed to load URL mapping data.")
        
    except Exception as e:
        print(f"Error loading models: {e}")
        raise HTTPException(status_code=500, detail="Failed to load models.")


def translate_ar_to_en(text):
    try:
        inputs = global_models.ar_to_en_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
        translated_ids = global_models.ar_to_en_model.generate(
            inputs.input_ids,
            max_length=512,
            num_beams=4,
            early_stopping=True
        )
        translated_text = global_models.ar_to_en_tokenizer.decode(translated_ids[0], skip_special_tokens=True)
        return translated_text
    except Exception as e:
        print(f"Error during Arabic to English translation: {e}")
        return None

def translate_en_to_ar(text):
    try:
        inputs = global_models.en_to_ar_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
        translated_ids = global_models.en_to_ar_model.generate(
            inputs.input_ids,
            max_length=512,
            num_beams=4,
            early_stopping=True
        )
        translated_text = global_models.en_to_ar_tokenizer.decode(translated_ids[0], skip_special_tokens=True)
        return translated_text
    except Exception as e:
        print(f"Error during English to Arabic translation: {e}")
        return None

def process_query(query_text, language_code):
    if language_code == 0:
        return translate_ar_to_en(query_text)
    return query_text

def embed_query_text(query_text):
    return global_models.embedding_model.encode([query_text])

def query_embeddings(query_embedding, n_results=5):
    doc_ids = list(global_models.embeddings_data.keys())
    doc_embeddings = np.array(list(global_models.embeddings_data.values()))
    similarities = cosine_similarity(query_embedding, doc_embeddings).flatten()
    top_indices = similarities.argsort()[-n_results:][::-1]
    return [(doc_ids[i], similarities[i]) for i in top_indices]

def retrieve_document_texts(doc_ids, folder_path='downloaded_articles'):
    texts = []
    for doc_id in doc_ids:
        file_path = os.path.join(folder_path, doc_id)
        try:
            with open(file_path, 'r', encoding='utf-8') as file:
                soup = BeautifulSoup(file, 'html.parser')
                text = soup.get_text(separator=' ', strip=True)
                texts.append(text)
        except FileNotFoundError:
            texts.append("")
    return texts

def extract_entities(text):
    inputs = global_models.bio_tokenizer(text, return_tensors="pt")
    outputs = global_models.bio_model(**inputs)
    predictions = torch.argmax(outputs.logits, dim=2)
    tokens = global_models.bio_tokenizer.convert_ids_to_tokens(inputs.input_ids[0])
    return [tokens[i] for i in range(len(tokens)) if predictions[0][i].item() != 0]

def create_prompt(question, passage):
    return f"""
    As a medical expert, you are required to answer the following question based only on the provided passage. 
    Do not include any information not present in the passage. Your response should directly reflect the content 
    of the passage. Maintain accuracy and relevance to the provided information.

    Passage: {passage}

    Question: {question}

    Answer:
    """

def generate_answer(prompt, max_length=860, temperature=0.2):
    inputs = global_models.tokenizer_f(prompt, return_tensors="pt", truncation=True)
    
    start_time = time.time()
    output_ids = global_models.model_f.generate(
        inputs.input_ids,
        max_length=max_length,
        num_return_sequences=1,
        temperature=temperature,
        pad_token_id=global_models.tokenizer_f.eos_token_id
    )
    duration = time.time() - start_time
    
    answer = global_models.tokenizer_f.decode(output_ids[0], skip_special_tokens=True)
    return answer, duration

def clean_answer(answer):
    answer_part = answer.split("Answer:")[-1].strip()
    if not answer_part.endswith('.'):
        last_period_index = answer_part.rfind('.')
        if last_period_index != -1:
            answer_part = answer_part[:last_period_index + 1].strip()
    return answer_part

@app.post("/retrieve_documents")
async def retrieve_documents(input_data: QueryInput):
    try:
        # Process query
        processed_query = process_query(input_data.query_text, input_data.language_code)
        query_embedding = embed_query_text(processed_query)
        results = query_embeddings(query_embedding)
        
        # Get document texts and rerank
        document_ids = [doc_id for doc_id, _ in results]
        document_texts = retrieve_document_texts(document_ids)
        scores = global_models.cross_encoder.predict([(processed_query, doc) for doc in document_texts])
        
        # Prepare response
        documents = []
        for score, doc_id, text in zip(scores, document_ids, document_texts):
            url = global_models.file_name_to_url.get(doc_id, "")
            documents.append({
                "title": doc_id,
                "url": url,
                "text": text if input_data.language_code == 1 else translate_en_to_ar(text),
                "score": float(score)
            })
        
        return {"status": "success", "documents": documents}
    
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.post("/get_answer")
async def get_answer(input_data: QueryInput):
    try:
        # Process query
        processed_query = process_query(input_data.query_text, input_data.language_code)
        
        # Get relevant documents
        query_embedding = embed_query_text(processed_query)
        results = query_embeddings(query_embedding)
        document_ids = [doc_id for doc_id, _ in results]
        document_texts = retrieve_document_texts(document_ids)
        
        # Extract entities and create context
        entities = extract_entities(processed_query)
        context = " ".join(document_texts)
        enhanced_context = f"{context}\n\nEntities: {', '.join(entities)}"
        
        # Generate answer
        prompt = create_prompt(processed_query, enhanced_context)
        answer, duration = generate_answer(prompt)
        final_answer = clean_answer(answer)
        
        # Translate if needed
        if input_data.language_code == 0:
            final_answer = translate_en_to_ar(final_answer)
        
        return {
            "status": "success",
            "answer": final_answer,
            "processing_time": duration
        }
    
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/")
async def root():
    return {"message": "Server is running"}

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)