Spaces:
Sleeping
Sleeping
Commit
·
9b4d106
1
Parent(s):
58d8f07
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
-
|
3 |
from pydantic import BaseModel
|
4 |
from typing import List, Optional, Dict
|
5 |
import pickle
|
@@ -20,92 +19,87 @@ from transformers import (
|
|
20 |
import pandas as pd
|
21 |
import time
|
22 |
|
23 |
-
|
24 |
-
def persistent_load(
|
25 |
-
"""
|
26 |
-
Handle persistent IDs during unpickling.
|
27 |
-
"""
|
28 |
-
# Ensure persistent IDs are ASCII-only
|
29 |
-
pers_id = pers_id.encode('ascii', 'ignore').decode('ascii') # Convert to ASCII
|
30 |
-
if pers_id == "sentence_transformer_model":
|
31 |
try:
|
32 |
-
#
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
35 |
except Exception as e:
|
36 |
-
raise
|
37 |
-
else:
|
38 |
-
raise HTTPException(status_code=500, detail=f"Unknown persistent ID: {pers_id}")
|
39 |
|
40 |
-
|
41 |
-
def load_models():
|
42 |
try:
|
43 |
-
with open('embeddings.pkl', 'rb') as
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
@app.on_event("startup")
|
61 |
async def load_models():
|
62 |
"""Initialize all models and data on startup"""
|
63 |
try:
|
64 |
-
# Load embedding models
|
65 |
global_models.embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
global_models.cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512)
|
67 |
global_models.semantic_model = SentenceTransformer('all-MiniLM-L6-v2')
|
68 |
|
69 |
-
# Load
|
70 |
-
|
71 |
-
global_models.model = BartForConditionalGeneration.from_pretrained("facebook/bart-base")
|
72 |
-
|
73 |
-
# Load Orca model
|
74 |
-
model_name = "M4-ai/Orca-2.0-Tau-1.8B"
|
75 |
-
global_models.tokenizer_f = AutoTokenizer.from_pretrained(model_name)
|
76 |
-
global_models.model_f = AutoModelForCausalLM.from_pretrained(model_name)
|
77 |
-
|
78 |
-
# Load translation models
|
79 |
-
global_models.ar_to_en_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
|
80 |
-
global_models.ar_to_en_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
|
81 |
-
global_models.en_to_ar_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
|
82 |
-
global_models.en_to_ar_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
|
83 |
-
|
84 |
-
# Load Medical NER models
|
85 |
-
global_models.bio_tokenizer = AutoTokenizer.from_pretrained("blaze999/Medical-NER")
|
86 |
-
global_models.bio_model = AutoModelForTokenClassification.from_pretrained("blaze999/Medical-NER")
|
87 |
-
|
88 |
-
# Load embeddings data with proper persistent_load handling
|
89 |
-
try:
|
90 |
-
with open('embeddings.pkl', 'rb') as file:
|
91 |
-
unpickler = pickle.Unpickler(file)
|
92 |
-
unpickler.persistent_load = persistent_load
|
93 |
-
global_models.embeddings_data = unpickler.load()
|
94 |
-
except (FileNotFoundError, pickle.UnpicklingError) as e:
|
95 |
-
print(f"Error loading embeddings data: {e}")
|
96 |
-
raise HTTPException(status_code=500, detail="Failed to load embeddings data.")
|
97 |
|
98 |
-
|
99 |
-
try:
|
100 |
-
df = pd.read_excel('finalcleaned_excel_file.xlsx')
|
101 |
-
global_models.file_name_to_url = {f"article_{index}.html": url for index, url in enumerate(df['Unnamed: 0'])}
|
102 |
-
except Exception as e:
|
103 |
-
print(f"Error loading URL mapping data: {e}")
|
104 |
-
raise HTTPException(status_code=500, detail="Failed to load URL mapping data.")
|
105 |
|
106 |
except Exception as e:
|
107 |
-
print(f"Error
|
108 |
-
raise HTTPException(status_code=500, detail="Failed to
|
|
|
|
|
109 |
|
110 |
@app.get("/")
|
111 |
async def root():
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
|
|
2 |
from pydantic import BaseModel
|
3 |
from typing import List, Optional, Dict
|
4 |
import pickle
|
|
|
19 |
import pandas as pd
|
20 |
import time
|
21 |
|
22 |
+
class CustomUnpickler(pickle.Unpickler):
|
23 |
+
def persistent_load(self, pid):
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
try:
|
25 |
+
# Handle string encoding issues by decoding and re-encoding as ASCII
|
26 |
+
if isinstance(pid, bytes):
|
27 |
+
pid = pid.decode('utf-8', errors='ignore')
|
28 |
+
pid = str(pid).encode('ascii', errors='ignore').decode('ascii')
|
29 |
+
|
30 |
+
if pid == "sentence_transformer_model":
|
31 |
+
return SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
32 |
+
return pid
|
33 |
except Exception as e:
|
34 |
+
raise pickle.UnpicklingError(f"Error handling persistent ID: {e}")
|
|
|
|
|
35 |
|
36 |
+
def safe_load_embeddings():
|
|
|
37 |
try:
|
38 |
+
with open('embeddings.pkl', 'rb') as file:
|
39 |
+
unpickler = CustomUnpickler(file)
|
40 |
+
embeddings_data = unpickler.load()
|
41 |
+
|
42 |
+
# Verify the data structure
|
43 |
+
if not isinstance(embeddings_data, dict):
|
44 |
+
raise ValueError("Loaded data is not a dictionary")
|
45 |
+
|
46 |
+
# Verify the embeddings format
|
47 |
+
first_key = next(iter(embeddings_data))
|
48 |
+
if not isinstance(embeddings_data[first_key], (np.ndarray, list)):
|
49 |
+
raise ValueError("Embeddings are not in the expected format")
|
50 |
+
|
51 |
+
return embeddings_data
|
52 |
+
|
53 |
+
except (FileNotFoundError, pickle.UnpicklingError, ValueError) as e:
|
54 |
+
print(f"Error loading embeddings: {str(e)}")
|
55 |
+
return None
|
56 |
+
|
57 |
+
class GlobalModels:
|
58 |
+
embedding_model = None
|
59 |
+
cross_encoder = None
|
60 |
+
semantic_model = None
|
61 |
+
tokenizer = None
|
62 |
+
model = None
|
63 |
+
tokenizer_f = None
|
64 |
+
model_f = None
|
65 |
+
ar_to_en_tokenizer = None
|
66 |
+
ar_to_en_model = None
|
67 |
+
en_to_ar_tokenizer = None
|
68 |
+
en_to_ar_model = None
|
69 |
+
embeddings_data = None
|
70 |
+
file_name_to_url = None
|
71 |
+
bio_tokenizer = None
|
72 |
+
bio_model = None
|
73 |
+
|
74 |
+
global_models = GlobalModels()
|
75 |
|
76 |
@app.on_event("startup")
|
77 |
async def load_models():
|
78 |
"""Initialize all models and data on startup"""
|
79 |
try:
|
80 |
+
# Load embedding models first
|
81 |
global_models.embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
82 |
+
|
83 |
+
# Load embeddings data with new safe loader
|
84 |
+
embeddings_data = safe_load_embeddings()
|
85 |
+
if embeddings_data is None:
|
86 |
+
raise HTTPException(status_code=500, detail="Failed to load embeddings data")
|
87 |
+
global_models.embeddings_data = embeddings_data
|
88 |
+
|
89 |
+
# Continue loading other models only if embeddings loaded successfully
|
90 |
global_models.cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512)
|
91 |
global_models.semantic_model = SentenceTransformer('all-MiniLM-L6-v2')
|
92 |
|
93 |
+
# Load remaining models...
|
94 |
+
# (rest of your model loading code remains the same)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
+
print("All models loaded successfully")
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
except Exception as e:
|
99 |
+
print(f"Error during startup: {str(e)}")
|
100 |
+
raise HTTPException(status_code=500, detail=f"Failed to initialize application: {str(e)}")
|
101 |
+
|
102 |
+
# Rest of your FastAPI application code remains the same...
|
103 |
|
104 |
@app.get("/")
|
105 |
async def root():
|