Spaces:
Sleeping
Sleeping
Commit
·
b2cd2f5
1
Parent(s):
1a71739
Update app.py
Browse files
app.py
CHANGED
|
@@ -39,7 +39,9 @@ def load_models():
|
|
| 39 |
try:
|
| 40 |
# Load embeddings data with custom persistent_load function
|
| 41 |
with open("models/embeddings.pkl", "rb") as file:
|
| 42 |
-
|
|
|
|
|
|
|
| 43 |
print("Embeddings data loaded successfully.")
|
| 44 |
except pickle.UnpicklingError as e:
|
| 45 |
raise HTTPException(status_code=500, detail=f"Unpickling error: {e}")
|
|
@@ -49,13 +51,54 @@ def load_models():
|
|
| 49 |
app = FastAPI()
|
| 50 |
|
| 51 |
@app.on_event("startup")
|
| 52 |
-
async def
|
| 53 |
-
"""
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
@app.get("/")
|
| 61 |
async def root():
|
|
|
|
| 39 |
try:
|
| 40 |
# Load embeddings data with custom persistent_load function
|
| 41 |
with open("models/embeddings.pkl", "rb") as file:
|
| 42 |
+
unpickler = pickle.Unpickler(file)
|
| 43 |
+
unpickler.persistent_load = persistent_load
|
| 44 |
+
global_models.embeddings_data = unpickler.load()
|
| 45 |
print("Embeddings data loaded successfully.")
|
| 46 |
except pickle.UnpicklingError as e:
|
| 47 |
raise HTTPException(status_code=500, detail=f"Unpickling error: {e}")
|
|
|
|
| 51 |
app = FastAPI()
|
| 52 |
|
| 53 |
@app.on_event("startup")
|
| 54 |
+
async def load_models():
|
| 55 |
+
"""Initialize all models and data on startup"""
|
| 56 |
+
try:
|
| 57 |
+
# Load embedding models
|
| 58 |
+
global_models.embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 59 |
+
global_models.cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512)
|
| 60 |
+
global_models.semantic_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 61 |
+
|
| 62 |
+
# Load BART models
|
| 63 |
+
global_models.tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base")
|
| 64 |
+
global_models.model = BartForConditionalGeneration.from_pretrained("facebook/bart-base")
|
| 65 |
+
|
| 66 |
+
# Load Orca model
|
| 67 |
+
model_name = "M4-ai/Orca-2.0-Tau-1.8B"
|
| 68 |
+
global_models.tokenizer_f = AutoTokenizer.from_pretrained(model_name)
|
| 69 |
+
global_models.model_f = AutoModelForCausalLM.from_pretrained(model_name)
|
| 70 |
+
|
| 71 |
+
# Load translation models
|
| 72 |
+
global_models.ar_to_en_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
|
| 73 |
+
global_models.ar_to_en_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
|
| 74 |
+
global_models.en_to_ar_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
|
| 75 |
+
global_models.en_to_ar_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
|
| 76 |
+
|
| 77 |
+
# Load Medical NER models
|
| 78 |
+
global_models.bio_tokenizer = AutoTokenizer.from_pretrained("blaze999/Medical-NER")
|
| 79 |
+
global_models.bio_model = AutoModelForTokenClassification.from_pretrained("blaze999/Medical-NER")
|
| 80 |
+
|
| 81 |
+
# Load embeddings data with proper persistent_load handling
|
| 82 |
+
try:
|
| 83 |
+
with open('embeddings.pkl', 'rb') as file:
|
| 84 |
+
unpickler = pickle.Unpickler(file)
|
| 85 |
+
unpickler.persistent_load = persistent_load
|
| 86 |
+
global_models.embeddings_data = unpickler.load()
|
| 87 |
+
except (FileNotFoundError, pickle.UnpicklingError) as e:
|
| 88 |
+
print(f"Error loading embeddings data: {e}")
|
| 89 |
+
raise HTTPException(status_code=500, detail="Failed to load embeddings data.")
|
| 90 |
+
|
| 91 |
+
# Load URL mapping data
|
| 92 |
+
try:
|
| 93 |
+
df = pd.read_excel('finalcleaned_excel_file.xlsx')
|
| 94 |
+
global_models.file_name_to_url = {f"article_{index}.html": url for index, url in enumerate(df['Unnamed: 0'])}
|
| 95 |
+
except Exception as e:
|
| 96 |
+
print(f"Error loading URL mapping data: {e}")
|
| 97 |
+
raise HTTPException(status_code=500, detail="Failed to load URL mapping data.")
|
| 98 |
+
|
| 99 |
+
except Exception as e:
|
| 100 |
+
print(f"Error loading models: {e}")
|
| 101 |
+
raise HTTPException(status_code=500, detail="Failed to load models.")
|
| 102 |
|
| 103 |
@app.get("/")
|
| 104 |
async def root():
|