Spaces:
Running
on
Zero
Running
on
Zero
# Search models on Civitai and Hugging Face | |
The [auto_diffusers](https://github.com/suzukimain/auto_diffusers) library provides additional functionalities to Diffusers such as searching for models on Civitai and the Hugging Face Hub. | |
Please refer to the original library [here](https://pypi.org/project/auto-diffusers/) | |
## Installation | |
Before running the scripts, make sure to install the library's training dependencies: | |
> [!IMPORTANT] | |
> To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the installation up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment. | |
```bash | |
git clone https://github.com/huggingface/diffusers | |
cd diffusers | |
pip install . | |
``` | |
Set up the pipeline. You can also cd to this folder and run it. | |
```bash | |
!wget https://raw.githubusercontent.com/suzukimain/auto_diffusers/refs/heads/master/src/auto_diffusers/pipeline_easy.py | |
``` | |
## Load from Civitai | |
```python | |
from pipeline_easy import ( | |
EasyPipelineForText2Image, | |
EasyPipelineForImage2Image, | |
EasyPipelineForInpainting, | |
) | |
# Text-to-Image | |
pipeline = EasyPipelineForText2Image.from_civitai( | |
"search_word", | |
base_model="SD 1.5", | |
).to("cuda") | |
# Image-to-Image | |
pipeline = EasyPipelineForImage2Image.from_civitai( | |
"search_word", | |
base_model="SD 1.5", | |
).to("cuda") | |
# Inpainting | |
pipeline = EasyPipelineForInpainting.from_civitai( | |
"search_word", | |
base_model="SD 1.5", | |
).to("cuda") | |
``` | |
## Load from Hugging Face | |
```python | |
from pipeline_easy import ( | |
EasyPipelineForText2Image, | |
EasyPipelineForImage2Image, | |
EasyPipelineForInpainting, | |
) | |
# Text-to-Image | |
pipeline = EasyPipelineForText2Image.from_huggingface( | |
"search_word", | |
checkpoint_format="diffusers", | |
).to("cuda") | |
# Image-to-Image | |
pipeline = EasyPipelineForImage2Image.from_huggingface( | |
"search_word", | |
checkpoint_format="diffusers", | |
).to("cuda") | |
# Inpainting | |
pipeline = EasyPipelineForInpainting.from_huggingface( | |
"search_word", | |
checkpoint_format="diffusers", | |
).to("cuda") | |
``` | |
## Search Civitai and Huggingface | |
```python | |
# Load Lora into the pipeline. | |
pipeline.auto_load_lora_weights("Detail Tweaker") | |
# Load TextualInversion into the pipeline. | |
pipeline.auto_load_textual_inversion("EasyNegative", token="EasyNegative") | |
``` | |
### Search Civitai | |
> [!TIP] | |
> **If an error occurs, insert the `token` and run again.** | |
#### `EasyPipeline.from_civitai` parameters | |
| Name | Type | Default | Description | | |
|:---------------:|:----------------------:|:-------------:|:-----------------------------------------------------------------------------------:| | |
| search_word | string, Path | ー | The search query string. Can be a keyword, Civitai URL, local directory or file path. | | |
| model_type | string | `Checkpoint` | The type of model to search for. <br>(for example `Checkpoint`, `TextualInversion`, `Controlnet`, `LORA`, `Hypernetwork`, `AestheticGradient`, `Poses`) | | |
| base_model | string | None | Trained model tag (for example `SD 1.5`, `SD 3.5`, `SDXL 1.0`) | | |
| torch_dtype | string, torch.dtype | None | Override the default `torch.dtype` and load the model with another dtype. | | |
| force_download | bool | False | Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. | | |
| cache_dir | string, Path | None | Path to the folder where cached files are stored. | | |
| resume | bool | False | Whether to resume an incomplete download. | | |
| token | string | None | API token for Civitai authentication. | | |
#### `search_civitai` parameters | |
| Name | Type | Default | Description | | |
|:---------------:|:--------------:|:-------------:|:-----------------------------------------------------------------------------------:| | |
| search_word | string, Path | ー | The search query string. Can be a keyword, Civitai URL, local directory or file path. | | |
| model_type | string | `Checkpoint` | The type of model to search for. <br>(for example `Checkpoint`, `TextualInversion`, `Controlnet`, `LORA`, `Hypernetwork`, `AestheticGradient`, `Poses`) | | |
| base_model | string | None | Trained model tag (for example `SD 1.5`, `SD 3.5`, `SDXL 1.0`) | | |
| download | bool | False | Whether to download the model. | | |
| force_download | bool | False | Whether to force the download if the model already exists. | | |
| cache_dir | string, Path | None | Path to the folder where cached files are stored. | | |
| resume | bool | False | Whether to resume an incomplete download. | | |
| token | string | None | API token for Civitai authentication. | | |
| include_params | bool | False | Whether to include parameters in the returned data. | | |
| skip_error | bool | False | Whether to skip errors and return None. | | |
### Search Huggingface | |
> [!TIP] | |
> **If an error occurs, insert the `token` and run again.** | |
#### `EasyPipeline.from_huggingface` parameters | |
| Name | Type | Default | Description | | |
|:---------------------:|:-------------------:|:--------------:|:----------------------------------------------------------------:| | |
| search_word | string, Path | ー | The search query string. Can be a keyword, Hugging Face URL, local directory or file path, or a Hugging Face path (`<creator>/<repo>`). | | |
| checkpoint_format | string | `single_file` | The format of the model checkpoint.<br>● `single_file` to search for `single file checkpoint` <br>●`diffusers` to search for `multifolder diffusers format checkpoint` | | |
| torch_dtype | string, torch.dtype | None | Override the default `torch.dtype` and load the model with another dtype. | | |
| force_download | bool | False | Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. | | |
| cache_dir | string, Path | None | Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. | | |
| token | string, bool | None | The token to use as HTTP bearer authorization for remote files. | | |
#### `search_huggingface` parameters | |
| Name | Type | Default | Description | | |
|:---------------------:|:-------------------:|:--------------:|:----------------------------------------------------------------:| | |
| search_word | string, Path | ー | The search query string. Can be a keyword, Hugging Face URL, local directory or file path, or a Hugging Face path (`<creator>/<repo>`). | | |
| checkpoint_format | string | `single_file` | The format of the model checkpoint. <br>● `single_file` to search for `single file checkpoint` <br>●`diffusers` to search for `multifolder diffusers format checkpoint` | | |
| pipeline_tag | string | None | Tag to filter models by pipeline. | | |
| download | bool | False | Whether to download the model. | | |
| force_download | bool | False | Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. | | |
| cache_dir | string, Path | None | Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. | | |
| token | string, bool | None | The token to use as HTTP bearer authorization for remote files. | | |
| include_params | bool | False | Whether to include parameters in the returned data. | | |
| skip_error | bool | False | Whether to skip errors and return None. | | |