# Search models on Civitai and Hugging Face The [auto_diffusers](https://github.com/suzukimain/auto_diffusers) library provides additional functionalities to Diffusers such as searching for models on Civitai and the Hugging Face Hub. Please refer to the original library [here](https://pypi.org/project/auto-diffusers/) ## Installation Before running the scripts, make sure to install the library's training dependencies: > [!IMPORTANT] > To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the installation up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment. ```bash git clone https://github.com/huggingface/diffusers cd diffusers pip install . ``` Set up the pipeline. You can also cd to this folder and run it. ```bash !wget https://raw.githubusercontent.com/suzukimain/auto_diffusers/refs/heads/master/src/auto_diffusers/pipeline_easy.py ``` ## Load from Civitai ```python from pipeline_easy import ( EasyPipelineForText2Image, EasyPipelineForImage2Image, EasyPipelineForInpainting, ) # Text-to-Image pipeline = EasyPipelineForText2Image.from_civitai( "search_word", base_model="SD 1.5", ).to("cuda") # Image-to-Image pipeline = EasyPipelineForImage2Image.from_civitai( "search_word", base_model="SD 1.5", ).to("cuda") # Inpainting pipeline = EasyPipelineForInpainting.from_civitai( "search_word", base_model="SD 1.5", ).to("cuda") ``` ## Load from Hugging Face ```python from pipeline_easy import ( EasyPipelineForText2Image, EasyPipelineForImage2Image, EasyPipelineForInpainting, ) # Text-to-Image pipeline = EasyPipelineForText2Image.from_huggingface( "search_word", checkpoint_format="diffusers", ).to("cuda") # Image-to-Image pipeline = EasyPipelineForImage2Image.from_huggingface( "search_word", checkpoint_format="diffusers", ).to("cuda") # Inpainting pipeline = EasyPipelineForInpainting.from_huggingface( "search_word", checkpoint_format="diffusers", ).to("cuda") ``` ## Search Civitai and Huggingface ```python # Load Lora into the pipeline. pipeline.auto_load_lora_weights("Detail Tweaker") # Load TextualInversion into the pipeline. pipeline.auto_load_textual_inversion("EasyNegative", token="EasyNegative") ``` ### Search Civitai > [!TIP] > **If an error occurs, insert the `token` and run again.** #### `EasyPipeline.from_civitai` parameters | Name | Type | Default | Description | |:---------------:|:----------------------:|:-------------:|:-----------------------------------------------------------------------------------:| | search_word | string, Path | ー | The search query string. Can be a keyword, Civitai URL, local directory or file path. | | model_type | string | `Checkpoint` | The type of model to search for.
(for example `Checkpoint`, `TextualInversion`, `Controlnet`, `LORA`, `Hypernetwork`, `AestheticGradient`, `Poses`) | | base_model | string | None | Trained model tag (for example `SD 1.5`, `SD 3.5`, `SDXL 1.0`) | | torch_dtype | string, torch.dtype | None | Override the default `torch.dtype` and load the model with another dtype. | | force_download | bool | False | Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. | | cache_dir | string, Path | None | Path to the folder where cached files are stored. | | resume | bool | False | Whether to resume an incomplete download. | | token | string | None | API token for Civitai authentication. | #### `search_civitai` parameters | Name | Type | Default | Description | |:---------------:|:--------------:|:-------------:|:-----------------------------------------------------------------------------------:| | search_word | string, Path | ー | The search query string. Can be a keyword, Civitai URL, local directory or file path. | | model_type | string | `Checkpoint` | The type of model to search for.
(for example `Checkpoint`, `TextualInversion`, `Controlnet`, `LORA`, `Hypernetwork`, `AestheticGradient`, `Poses`) | | base_model | string | None | Trained model tag (for example `SD 1.5`, `SD 3.5`, `SDXL 1.0`) | | download | bool | False | Whether to download the model. | | force_download | bool | False | Whether to force the download if the model already exists. | | cache_dir | string, Path | None | Path to the folder where cached files are stored. | | resume | bool | False | Whether to resume an incomplete download. | | token | string | None | API token for Civitai authentication. | | include_params | bool | False | Whether to include parameters in the returned data. | | skip_error | bool | False | Whether to skip errors and return None. | ### Search Huggingface > [!TIP] > **If an error occurs, insert the `token` and run again.** #### `EasyPipeline.from_huggingface` parameters | Name | Type | Default | Description | |:---------------------:|:-------------------:|:--------------:|:----------------------------------------------------------------:| | search_word | string, Path | ー | The search query string. Can be a keyword, Hugging Face URL, local directory or file path, or a Hugging Face path (`/`). | | checkpoint_format | string | `single_file` | The format of the model checkpoint.
● `single_file` to search for `single file checkpoint`
●`diffusers` to search for `multifolder diffusers format checkpoint` | | torch_dtype | string, torch.dtype | None | Override the default `torch.dtype` and load the model with another dtype. | | force_download | bool | False | Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. | | cache_dir | string, Path | None | Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. | | token | string, bool | None | The token to use as HTTP bearer authorization for remote files. | #### `search_huggingface` parameters | Name | Type | Default | Description | |:---------------------:|:-------------------:|:--------------:|:----------------------------------------------------------------:| | search_word | string, Path | ー | The search query string. Can be a keyword, Hugging Face URL, local directory or file path, or a Hugging Face path (`/`). | | checkpoint_format | string | `single_file` | The format of the model checkpoint.
● `single_file` to search for `single file checkpoint`
●`diffusers` to search for `multifolder diffusers format checkpoint` | | pipeline_tag | string | None | Tag to filter models by pipeline. | | download | bool | False | Whether to download the model. | | force_download | bool | False | Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. | | cache_dir | string, Path | None | Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. | | token | string, bool | None | The token to use as HTTP bearer authorization for remote files. | | include_params | bool | False | Whether to include parameters in the returned data. | | skip_error | bool | False | Whether to skip errors and return None. |