File size: 2,328 Bytes
5cb9c90 57d9268 5cb9c90 9ecefd1 57d9268 5cb9c90 b8c0ef3 103d57b 5cb9c90 27c943a 103d57b 57d9268 9ecefd1 57d9268 103d57b 57d9268 103d57b 57d9268 103d57b 57d9268 9ecefd1 5cb9c90 515379f 98c06b0 d199239 98c06b0 1561f9d 94ef5c0 98c06b0 b8c0ef3 1561f9d 94ef5c0 1561f9d 57d9268 b8c0ef3 2fdad2f 94ef5c0 2fdad2f 94ef5c0 b8c0ef3 94ef5c0 b8c0ef3 57d9268 5cb9c90 57d9268 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
# coding=utf-8
import gradio as gr
import numpy as np
import soundfile as sf
import spaces
import torch
import torchaudio
from gradio.themes.utils import colors
from sv import process_audio
@spaces.GPU
def model_inference(input_wav, language):
# Simplify language selection
language = language if language else "auto"
# Handle input_wav format
if isinstance(input_wav, tuple):
fs, input_wav = input_wav
input_wav = input_wav.astype(np.float32) / np.iinfo(np.int16).max
input_wav = input_wav.mean(-1) if len(input_wav.shape) > 1 else input_wav
if fs != 16000:
resampler = torchaudio.transforms.Resample(fs, 16000)
input_wav = resampler(torch.from_numpy(input_wav).float()[None, :])[
0
].numpy()
# Process audio
with sf.SoundFile("temp.wav", "w", samplerate=16000, channels=1) as f:
f.write(input_wav)
result = process_audio("temp.wav", language=language)
return result
def launch():
with gr.Blocks() as demo:
gr.Markdown("# Cantonese Call Transcriber")
gr.Markdown(
"""
This tool transcribes Cantonese audio calls into text.
## How to use:
1. Upload an audio file or use the provided example.
2. Click the 'Process Audio' button.
3. The transcription will appear in the output box.
"""
)
# Define components
audio_input = gr.Audio(label="Input")
text_output = gr.Textbox(lines=10, label="Output")
# Place the Examples component first
gr.Examples(
examples=[["example/scb.mp3"]],
inputs=[audio_input],
outputs=[text_output],
fn=lambda x: model_inference(x, "yue"),
examples_per_page=1,
)
# Main interface
with gr.Row():
with gr.Column(scale=2):
audio_input
fn_button = gr.Button("Process Audio", variant="primary")
with gr.Column(scale=3):
text_output
# Set up event handler
fn_button.click(
fn=lambda x: model_inference(x, "yue"),
inputs=[audio_input],
outputs=[text_output],
)
demo.launch()
if __name__ == "__main__":
launch()
|