Spaces:
Runtime error
Runtime error
terry-li-hm
commited on
Commit
ยท
57d9268
1
Parent(s):
af0fecd
Remove `html_content`
Browse files
app.py
CHANGED
|
@@ -1,84 +1,83 @@
|
|
| 1 |
# coding=utf-8
|
| 2 |
|
| 3 |
-
import os
|
| 4 |
-
import librosa
|
| 5 |
import base64
|
| 6 |
import io
|
| 7 |
-
import
|
| 8 |
import re
|
| 9 |
|
|
|
|
|
|
|
| 10 |
import numpy as np
|
|
|
|
| 11 |
import torch
|
| 12 |
import torchaudio
|
| 13 |
-
|
| 14 |
-
import spaces
|
| 15 |
-
|
| 16 |
from funasr import AutoModel
|
| 17 |
|
| 18 |
model = "FunAudioLLM/SenseVoiceSmall"
|
| 19 |
-
model = AutoModel(
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
| 25 |
|
| 26 |
import re
|
| 27 |
|
| 28 |
emo_dict = {
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
}
|
| 37 |
|
| 38 |
event_dict = {
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
}
|
| 48 |
|
| 49 |
emoji_dict = {
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
}
|
| 80 |
|
| 81 |
-
lang_dict =
|
| 82 |
"<|zh|>": "<|lang|>",
|
| 83 |
"<|en|>": "<|lang|>",
|
| 84 |
"<|yue|>": "<|lang|>",
|
|
@@ -88,98 +87,111 @@ lang_dict = {
|
|
| 88 |
}
|
| 89 |
|
| 90 |
emo_set = {"๐", "๐", "๐ก", "๐ฐ", "๐คข", "๐ฎ"}
|
| 91 |
-
event_set = {"๐ผ", "๐", "๐", "๐ญ", "๐คง", "๐ท"
|
|
|
|
| 92 |
|
| 93 |
def format_str(s):
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
|
| 98 |
|
| 99 |
def format_str_v2(s):
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
|
|
|
| 117 |
|
| 118 |
def format_str_v3(s):
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
|
|
|
|
|
|
| 142 |
|
| 143 |
@spaces.GPU
|
| 144 |
def model_inference(input_wav, language, fs=16000):
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
|
| 185 |
audio_examples = [
|
|
@@ -200,28 +212,34 @@ audio_examples = [
|
|
| 200 |
|
| 201 |
|
| 202 |
def launch():
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
|
| 222 |
|
| 223 |
if __name__ == "__main__":
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
|
|
|
| 1 |
# coding=utf-8
|
| 2 |
|
|
|
|
|
|
|
| 3 |
import base64
|
| 4 |
import io
|
| 5 |
+
import os
|
| 6 |
import re
|
| 7 |
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import librosa
|
| 10 |
import numpy as np
|
| 11 |
+
import spaces
|
| 12 |
import torch
|
| 13 |
import torchaudio
|
|
|
|
|
|
|
|
|
|
| 14 |
from funasr import AutoModel
|
| 15 |
|
| 16 |
model = "FunAudioLLM/SenseVoiceSmall"
|
| 17 |
+
model = AutoModel(
|
| 18 |
+
model=model,
|
| 19 |
+
vad_model="iic/speech_fsmn_vad_zh-cn-16k-common-pytorch",
|
| 20 |
+
vad_kwargs={"max_single_segment_time": 30000},
|
| 21 |
+
hub="hf",
|
| 22 |
+
device="cuda",
|
| 23 |
+
)
|
| 24 |
|
| 25 |
import re
|
| 26 |
|
| 27 |
emo_dict = {
|
| 28 |
+
"<|HAPPY|>": "๐",
|
| 29 |
+
"<|SAD|>": "๐",
|
| 30 |
+
"<|ANGRY|>": "๐ก",
|
| 31 |
+
"<|NEUTRAL|>": "",
|
| 32 |
+
"<|FEARFUL|>": "๐ฐ",
|
| 33 |
+
"<|DISGUSTED|>": "๐คข",
|
| 34 |
+
"<|SURPRISED|>": "๐ฎ",
|
| 35 |
}
|
| 36 |
|
| 37 |
event_dict = {
|
| 38 |
+
"<|BGM|>": "๐ผ",
|
| 39 |
+
"<|Speech|>": "",
|
| 40 |
+
"<|Applause|>": "๐",
|
| 41 |
+
"<|Laughter|>": "๐",
|
| 42 |
+
"<|Cry|>": "๐ญ",
|
| 43 |
+
"<|Sneeze|>": "๐คง",
|
| 44 |
+
"<|Breath|>": "",
|
| 45 |
+
"<|Cough|>": "๐คง",
|
| 46 |
}
|
| 47 |
|
| 48 |
emoji_dict = {
|
| 49 |
+
"<|nospeech|><|Event_UNK|>": "โ",
|
| 50 |
+
"<|zh|>": "",
|
| 51 |
+
"<|en|>": "",
|
| 52 |
+
"<|yue|>": "",
|
| 53 |
+
"<|ja|>": "",
|
| 54 |
+
"<|ko|>": "",
|
| 55 |
+
"<|nospeech|>": "",
|
| 56 |
+
"<|HAPPY|>": "๐",
|
| 57 |
+
"<|SAD|>": "๐",
|
| 58 |
+
"<|ANGRY|>": "๐ก",
|
| 59 |
+
"<|NEUTRAL|>": "",
|
| 60 |
+
"<|BGM|>": "๐ผ",
|
| 61 |
+
"<|Speech|>": "",
|
| 62 |
+
"<|Applause|>": "๐",
|
| 63 |
+
"<|Laughter|>": "๐",
|
| 64 |
+
"<|FEARFUL|>": "๐ฐ",
|
| 65 |
+
"<|DISGUSTED|>": "๐คข",
|
| 66 |
+
"<|SURPRISED|>": "๐ฎ",
|
| 67 |
+
"<|Cry|>": "๐ญ",
|
| 68 |
+
"<|EMO_UNKNOWN|>": "",
|
| 69 |
+
"<|Sneeze|>": "๐คง",
|
| 70 |
+
"<|Breath|>": "",
|
| 71 |
+
"<|Cough|>": "๐ท",
|
| 72 |
+
"<|Sing|>": "",
|
| 73 |
+
"<|Speech_Noise|>": "",
|
| 74 |
+
"<|withitn|>": "",
|
| 75 |
+
"<|woitn|>": "",
|
| 76 |
+
"<|GBG|>": "",
|
| 77 |
+
"<|Event_UNK|>": "",
|
| 78 |
}
|
| 79 |
|
| 80 |
+
lang_dict = {
|
| 81 |
"<|zh|>": "<|lang|>",
|
| 82 |
"<|en|>": "<|lang|>",
|
| 83 |
"<|yue|>": "<|lang|>",
|
|
|
|
| 87 |
}
|
| 88 |
|
| 89 |
emo_set = {"๐", "๐", "๐ก", "๐ฐ", "๐คข", "๐ฎ"}
|
| 90 |
+
event_set = {"๐ผ", "๐", "๐", "๐ญ", "๐คง", "๐ท"}
|
| 91 |
+
|
| 92 |
|
| 93 |
def format_str(s):
|
| 94 |
+
for sptk in emoji_dict:
|
| 95 |
+
s = s.replace(sptk, emoji_dict[sptk])
|
| 96 |
+
return s
|
| 97 |
|
| 98 |
|
| 99 |
def format_str_v2(s):
|
| 100 |
+
sptk_dict = {}
|
| 101 |
+
for sptk in emoji_dict:
|
| 102 |
+
sptk_dict[sptk] = s.count(sptk)
|
| 103 |
+
s = s.replace(sptk, "")
|
| 104 |
+
emo = "<|NEUTRAL|>"
|
| 105 |
+
for e in emo_dict:
|
| 106 |
+
if sptk_dict[e] > sptk_dict[emo]:
|
| 107 |
+
emo = e
|
| 108 |
+
for e in event_dict:
|
| 109 |
+
if sptk_dict[e] > 0:
|
| 110 |
+
s = event_dict[e] + s
|
| 111 |
+
s = s + emo_dict[emo]
|
| 112 |
+
|
| 113 |
+
for emoji in emo_set.union(event_set):
|
| 114 |
+
s = s.replace(" " + emoji, emoji)
|
| 115 |
+
s = s.replace(emoji + " ", emoji)
|
| 116 |
+
return s.strip()
|
| 117 |
+
|
| 118 |
|
| 119 |
def format_str_v3(s):
|
| 120 |
+
def get_emo(s):
|
| 121 |
+
return s[-1] if s[-1] in emo_set else None
|
| 122 |
+
|
| 123 |
+
def get_event(s):
|
| 124 |
+
return s[0] if s[0] in event_set else None
|
| 125 |
+
|
| 126 |
+
s = s.replace("<|nospeech|><|Event_UNK|>", "โ")
|
| 127 |
+
for lang in lang_dict:
|
| 128 |
+
s = s.replace(lang, "<|lang|>")
|
| 129 |
+
s_list = [format_str_v2(s_i).strip(" ") for s_i in s.split("<|lang|>")]
|
| 130 |
+
new_s = " " + s_list[0]
|
| 131 |
+
cur_ent_event = get_event(new_s)
|
| 132 |
+
for i in range(1, len(s_list)):
|
| 133 |
+
if len(s_list[i]) == 0:
|
| 134 |
+
continue
|
| 135 |
+
if get_event(s_list[i]) == cur_ent_event and get_event(s_list[i]) != None:
|
| 136 |
+
s_list[i] = s_list[i][1:]
|
| 137 |
+
# else:
|
| 138 |
+
cur_ent_event = get_event(s_list[i])
|
| 139 |
+
if get_emo(s_list[i]) != None and get_emo(s_list[i]) == get_emo(new_s):
|
| 140 |
+
new_s = new_s[:-1]
|
| 141 |
+
new_s += s_list[i].strip().lstrip()
|
| 142 |
+
new_s = new_s.replace("The.", " ")
|
| 143 |
+
return new_s.strip()
|
| 144 |
+
|
| 145 |
|
| 146 |
@spaces.GPU
|
| 147 |
def model_inference(input_wav, language, fs=16000):
|
| 148 |
+
# task_abbr = {"Speech Recognition": "ASR", "Rich Text Transcription": ("ASR", "AED", "SER")}
|
| 149 |
+
language_abbr = {
|
| 150 |
+
"auto": "auto",
|
| 151 |
+
"zh": "zh",
|
| 152 |
+
"en": "en",
|
| 153 |
+
"yue": "yue",
|
| 154 |
+
"ja": "ja",
|
| 155 |
+
"ko": "ko",
|
| 156 |
+
"nospeech": "nospeech",
|
| 157 |
+
}
|
| 158 |
+
|
| 159 |
+
# task = "Speech Recognition" if task is None else task
|
| 160 |
+
language = "auto" if len(language) < 1 else language
|
| 161 |
+
selected_language = language_abbr[language]
|
| 162 |
+
# selected_task = task_abbr.get(task)
|
| 163 |
+
|
| 164 |
+
# print(f"input_wav: {type(input_wav)}, {input_wav[1].shape}, {input_wav}")
|
| 165 |
+
|
| 166 |
+
if isinstance(input_wav, tuple):
|
| 167 |
+
fs, input_wav = input_wav
|
| 168 |
+
input_wav = input_wav.astype(np.float32) / np.iinfo(np.int16).max
|
| 169 |
+
if len(input_wav.shape) > 1:
|
| 170 |
+
input_wav = input_wav.mean(-1)
|
| 171 |
+
if fs != 16000:
|
| 172 |
+
print(f"audio_fs: {fs}")
|
| 173 |
+
resampler = torchaudio.transforms.Resample(fs, 16000)
|
| 174 |
+
input_wav_t = torch.from_numpy(input_wav).to(torch.float32)
|
| 175 |
+
input_wav = resampler(input_wav_t[None, :])[0, :].numpy()
|
| 176 |
+
|
| 177 |
+
merge_vad = True # False if selected_task == "ASR" else True
|
| 178 |
+
print(f"language: {language}, merge_vad: {merge_vad}")
|
| 179 |
+
text = model.generate(
|
| 180 |
+
input=input_wav,
|
| 181 |
+
cache={},
|
| 182 |
+
language=language,
|
| 183 |
+
use_itn=True,
|
| 184 |
+
batch_size_s=500,
|
| 185 |
+
merge_vad=merge_vad,
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
print(text)
|
| 189 |
+
text = text[0]["text"]
|
| 190 |
+
text = format_str_v3(text)
|
| 191 |
+
|
| 192 |
+
print(text)
|
| 193 |
+
|
| 194 |
+
return text
|
| 195 |
|
| 196 |
|
| 197 |
audio_examples = [
|
|
|
|
| 212 |
|
| 213 |
|
| 214 |
def launch():
|
| 215 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 216 |
+
with gr.Row():
|
| 217 |
+
with gr.Column():
|
| 218 |
+
audio_inputs = gr.Audio(label="Upload audio or use the microphone")
|
| 219 |
+
|
| 220 |
+
with gr.Accordion("Configuration"):
|
| 221 |
+
language_inputs = gr.Dropdown(
|
| 222 |
+
choices=["auto", "zh", "en", "yue", "ja", "ko", "nospeech"],
|
| 223 |
+
value="auto",
|
| 224 |
+
label="Language",
|
| 225 |
+
)
|
| 226 |
+
fn_button = gr.Button("Start", variant="primary")
|
| 227 |
+
text_outputs = gr.Textbox(label="Results")
|
| 228 |
+
gr.Examples(
|
| 229 |
+
examples=audio_examples,
|
| 230 |
+
inputs=[audio_inputs, language_inputs],
|
| 231 |
+
examples_per_page=20,
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
fn_button.click(
|
| 235 |
+
model_inference,
|
| 236 |
+
inputs=[audio_inputs, language_inputs],
|
| 237 |
+
outputs=text_outputs,
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
demo.launch()
|
| 241 |
|
| 242 |
|
| 243 |
if __name__ == "__main__":
|
| 244 |
+
# iface.launch()
|
| 245 |
+
launch()
|
|
|
|
|
|