terry-li-hm
commited on
Commit
·
103d57b
1
Parent(s):
794435e
Update
Browse files
app.py
CHANGED
@@ -1,87 +1,56 @@
|
|
1 |
# coding=utf-8
|
2 |
|
3 |
-
import base64
|
4 |
-
import io
|
5 |
-
import os
|
6 |
-
import re
|
7 |
-
import tempfile
|
8 |
-
|
9 |
import gradio as gr
|
10 |
-
import librosa
|
11 |
import numpy as np
|
12 |
import soundfile as sf
|
13 |
import spaces
|
14 |
import torch
|
15 |
import torchaudio
|
16 |
-
from
|
17 |
-
from sv import clean_and_emoji_annotate_speech, process_audio
|
18 |
|
19 |
|
20 |
@spaces.GPU
|
21 |
-
def model_inference(input_wav, language
|
22 |
-
|
23 |
-
|
24 |
-
"zh": "zh",
|
25 |
-
"en": "en",
|
26 |
-
"yue": "yue",
|
27 |
-
"ja": "ja",
|
28 |
-
"ko": "ko",
|
29 |
-
"nospeech": "nospeech",
|
30 |
-
}
|
31 |
-
|
32 |
-
language = "auto" if len(language) < 1 else language
|
33 |
-
selected_language = language_abbr[language]
|
34 |
|
35 |
# Handle input_wav format
|
36 |
if isinstance(input_wav, tuple):
|
37 |
fs, input_wav = input_wav
|
38 |
input_wav = input_wav.astype(np.float32) / np.iinfo(np.int16).max
|
39 |
-
if len(input_wav.shape) > 1
|
40 |
-
input_wav = input_wav.mean(-1)
|
41 |
if fs != 16000:
|
42 |
resampler = torchaudio.transforms.Resample(fs, 16000)
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
# Save the input audio to a temporary file
|
47 |
-
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio:
|
48 |
-
sf.write(temp_audio.name, input_wav, 16000)
|
49 |
-
temp_audio_path = temp_audio.name
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
# Remove the temporary audio file
|
56 |
-
os.remove(temp_audio_path)
|
57 |
|
58 |
return result
|
59 |
|
60 |
|
61 |
-
audio_examples = [
|
62 |
-
["example/mtr.mp3", "auto"],
|
63 |
-
]
|
64 |
-
|
65 |
-
|
66 |
def launch():
|
67 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
68 |
with gr.Row():
|
69 |
with gr.Column():
|
70 |
audio_inputs = gr.Audio(label="Upload audio or use the microphone")
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
label="Language",
|
77 |
-
)
|
78 |
fn_button = gr.Button("Start", variant="primary")
|
79 |
text_outputs = gr.Textbox(label="Results")
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
85 |
|
86 |
fn_button.click(
|
87 |
model_inference,
|
@@ -93,5 +62,4 @@ def launch():
|
|
93 |
|
94 |
|
95 |
if __name__ == "__main__":
|
96 |
-
# iface.launch()
|
97 |
launch()
|
|
|
1 |
# coding=utf-8
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import gradio as gr
|
|
|
4 |
import numpy as np
|
5 |
import soundfile as sf
|
6 |
import spaces
|
7 |
import torch
|
8 |
import torchaudio
|
9 |
+
from sv import process_audio
|
|
|
10 |
|
11 |
|
12 |
@spaces.GPU
|
13 |
+
def model_inference(input_wav, language):
|
14 |
+
# Simplify language selection
|
15 |
+
language = language if language else "auto"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Handle input_wav format
|
18 |
if isinstance(input_wav, tuple):
|
19 |
fs, input_wav = input_wav
|
20 |
input_wav = input_wav.astype(np.float32) / np.iinfo(np.int16).max
|
21 |
+
input_wav = input_wav.mean(-1) if len(input_wav.shape) > 1 else input_wav
|
|
|
22 |
if fs != 16000:
|
23 |
resampler = torchaudio.transforms.Resample(fs, 16000)
|
24 |
+
input_wav = resampler(torch.from_numpy(input_wav).float()[None, :])[
|
25 |
+
0
|
26 |
+
].numpy()
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
# Process audio
|
29 |
+
with sf.SoundFile("temp.wav", "w", samplerate=16000, channels=1) as f:
|
30 |
+
f.write(input_wav)
|
31 |
+
result = process_audio("temp.wav", language=language)
|
|
|
|
|
32 |
|
33 |
return result
|
34 |
|
35 |
|
|
|
|
|
|
|
|
|
|
|
36 |
def launch():
|
37 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
38 |
with gr.Row():
|
39 |
with gr.Column():
|
40 |
audio_inputs = gr.Audio(label="Upload audio or use the microphone")
|
41 |
+
language_inputs = gr.Dropdown(
|
42 |
+
choices=["auto", "zh", "en", "yue", "ja", "ko", "nospeech"],
|
43 |
+
value="auto",
|
44 |
+
label="Language",
|
45 |
+
)
|
|
|
|
|
46 |
fn_button = gr.Button("Start", variant="primary")
|
47 |
text_outputs = gr.Textbox(label="Results")
|
48 |
+
|
49 |
+
gr.Examples(
|
50 |
+
examples=[["example/mtr.mp3", "yue"]],
|
51 |
+
inputs=[audio_inputs, language_inputs],
|
52 |
+
examples_per_page=20,
|
53 |
+
)
|
54 |
|
55 |
fn_button.click(
|
56 |
model_inference,
|
|
|
62 |
|
63 |
|
64 |
if __name__ == "__main__":
|
|
|
65 |
launch()
|