File size: 1,627 Bytes
5cb9c90 57d9268 5cb9c90 9ecefd1 57d9268 5cb9c90 103d57b 5cb9c90 27c943a 103d57b 57d9268 9ecefd1 57d9268 103d57b 57d9268 103d57b 57d9268 103d57b 57d9268 9ecefd1 5cb9c90 57d9268 666f662 2fdad2f 666f662 2fdad2f 666f662 57d9268 2fdad2f 57d9268 5cb9c90 57d9268 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
# coding=utf-8
import gradio as gr
import numpy as np
import soundfile as sf
import spaces
import torch
import torchaudio
from sv import process_audio
@spaces.GPU
def model_inference(input_wav, language):
# Simplify language selection
language = language if language else "auto"
# Handle input_wav format
if isinstance(input_wav, tuple):
fs, input_wav = input_wav
input_wav = input_wav.astype(np.float32) / np.iinfo(np.int16).max
input_wav = input_wav.mean(-1) if len(input_wav.shape) > 1 else input_wav
if fs != 16000:
resampler = torchaudio.transforms.Resample(fs, 16000)
input_wav = resampler(torch.from_numpy(input_wav).float()[None, :])[
0
].numpy()
# Process audio
with sf.SoundFile("temp.wav", "w", samplerate=16000, channels=1) as f:
f.write(input_wav)
result = process_audio("temp.wav", language=language)
return result
def launch():
with gr.Blocks(theme=gr.themes.Soft()) as demo:
with gr.Row():
gr.Examples(
examples=[["example/scb.mp3"]],
inputs=[audio_inputs],
outputs=text_outputs,
fn=lambda x: model_inference(x, "yue"),
)
with gr.Row():
with gr.Column(scale=2):
audio_inputs = gr.Audio(label="Input")
fn_button = gr.Button("Process Audio", variant="primary")
with gr.Column(scale=3):
text_outputs = gr.Textbox(lines=10, label="Output")
demo.launch()
if __name__ == "__main__":
launch()
|