File size: 11,053 Bytes
ace7187 a285eb6 ace7187 a285eb6 e17c6a5 eaa7aa4 e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f 371a8c3 b6c3e5f 53fda1d 371a8c3 a285eb6 b6c3e5f 53fda1d b6c3e5f 8c88f9c 1b1427d b6c3e5f 8c88f9c b6c3e5f 4014f2e b6c3e5f ca0a0e9 b6c3e5f 53fda1d b6c3e5f a285eb6 53fda1d ace7187 a285eb6 ace7187 53fda1d ace7187 371a8c3 b6c3e5f 371a8c3 b6c3e5f 371a8c3 34097f1 371a8c3 a285eb6 34097f1 5eed01e 34097f1 a285eb6 b6c3e5f a285eb6 951da42 371a8c3 b6c3e5f a285eb6 b6c3e5f a285eb6 ace7187 a285eb6 ace7187 a285eb6 ace7187 a285eb6 ace7187 a285eb6 ace7187 a285eb6 ace7187 a285eb6 ace7187 b6c3e5f a285eb6 b6c3e5f a285eb6 b6c3e5f a285eb6 b6c3e5f a285eb6 b6c3e5f a285eb6 b6c3e5f a285eb6 371a8c3 a285eb6 371a8c3 b6c3e5f a285eb6 53fda1d a285eb6 53fda1d a285eb6 53fda1d 371a8c3 b6c3e5f 951da42 b6c3e5f a285eb6 951da42 a285eb6 951da42 a285eb6 951da42 a285eb6 b44b79d b6c3e5f a285eb6 b6c3e5f ace7187 b6c3e5f ace7187 b6c3e5f 53fda1d 371a8c3 b6c3e5f ace7187 53fda1d ace7187 4014f2e 53fda1d 4014f2e a285eb6 e17c6a5 b6c3e5f e17c6a5 485b371 a285eb6 e17c6a5 60b9dfe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import os
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
from PIL import Image
from typing import Tuple, List
from constants import MODEL_PATH, DATABASE_DIR, DATABASE_PATH
from detector import SignatureDetector, download_model
def create_gradio_interface():
# Download model if it doesn't exist
if not os.path.exists(MODEL_PATH):
download_model()
# Initialize the detector
detector = SignatureDetector(MODEL_PATH)
css = """
.custom-button {
background-color: #b0ffb8 !important;
color: black !important;
}
.custom-button:hover {
background-color: #b0ffb8b3 !important;
}
.container {
max-width: 1200px !important;
margin: auto !important;
}
.main-container {
gap: 20px !important;
}
.metrics-container {
padding: 1.5rem !important;
border-radius: 0.75rem !important;
background-color: #1f2937 !important;
margin: 1rem 0 !important;
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1) !important;
}
.metrics-title {
font-size: 1.25rem !important;
font-weight: 600 !important;
color: #1f2937 !important;
margin-bottom: 1rem !important;
}
.metrics-row {
display: flex !important;
gap: 1rem !important;
margin-top: 0.5rem !important;
}
"""
def process_image(image: Image.Image, conf_thres: float, iou_thres: float) -> Tuple[Image.Image, str, plt.Figure, plt.Figure, str, str]:
if image is None:
return None, None, None, None, None, None
output_image, metrics = detector.detect(image, conf_thres, iou_thres)
# Create plots data
hist_data = pd.DataFrame({"Time (ms)": metrics["times"]})
indices = range(
metrics["start_index"], metrics["start_index"] + len(metrics["times"])
)
line_data = pd.DataFrame(
{
"Inference": indices,
"Time (ms)": metrics["times"],
"Mean": [metrics["avg_time"]] * len(metrics["times"]),
}
)
hist_fig, line_fig = detector.create_plots(hist_data, line_data)
return (
output_image,
gr.update(
value=f"{metrics['total_inferences']}",
container=True,
),
hist_fig,
line_fig,
f"{metrics['avg_time']:.2f}",
f"{metrics['times'][-1]:.2f}",
)
def process_folder(files_paths: List[str], conf_thres: float, iou_thres: float):
if not files_paths:
return None, None, None, None, None, None
valid_extensions = [".jpg", ".jpeg", ".png"]
image_files = [
f for f in files_paths if os.path.splitext(f.lower())[1] in valid_extensions
]
if not image_files:
return None, None, None, None, None, None
for img_file in image_files:
image = Image.open(img_file)
yield process_image(image, conf_thres, iou_thres)
with gr.Blocks(
theme=gr.themes.Soft(
primary_hue="indigo", secondary_hue="gray", neutral_hue="gray"
),
css=css,
) as iface:
gr.HTML(
"""
<h1>Tech4Humans - Signature Detector</h1>
<div style="display: flex; align-items: center; gap: 10px;">
<a href="https://huggingface.co/tech4humans/yolov8s-signature-detector">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/model-on-hf-md-dark.svg" alt="Model on HF">
</a>
<a href="https://huggingface.co/datasets/tech4humans/signature-detection">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-md-dark.svg" alt="Dataset on HF">
</a>
<a href="https://github.com/tech4ai/t4ai-signature-detect-server">
<img src="https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white" alt="GitHub">
</a>
</div>
"""
)
gr.Markdown(
"""
This system uses the [**YOLOv8s**](https://huggingface.co/tech4humans/yolov8s-signature-detector) model, specially fine-tuned for detecting handwritten signatures in document images.
With this detector, it is possible to identify signatures in digital documents with high accuracy in real time, making it ideal for applications involving validation, organization, and document processing.
---
"""
)
with gr.Row(equal_height=True, elem_classes="main-container"):
# Left column for controls and information
with gr.Column(scale=1):
with gr.Tab("Single Image"):
input_image = gr.Image(label="Upload your document", type="pil")
with gr.Row():
clear_single_btn = gr.ClearButton([input_image], value="Clear")
detect_single_btn = gr.Button(
"Detect", elem_classes="custom-button"
)
with gr.Tab("Image Folder"):
input_folder = gr.File(
label="Upload a folder with images",
file_count="directory",
type="filepath",
)
with gr.Row():
clear_folder_btn = gr.ClearButton([input_folder], value="Clear")
detect_folder_btn = gr.Button(
"Detect", elem_classes="custom-button"
)
with gr.Group():
confidence_threshold = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.25,
step=0.05,
label="Confidence Threshold",
info="Adjust the minimum confidence score required for detection.",
)
iou_threshold = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.5,
step=0.05,
label="IoU Threshold",
info="Adjust the Intersection over Union threshold for Non-Maximum Suppression (NMS).",
)
with gr.Column(scale=1):
output_image = gr.Image(label="Detection Results")
with gr.Accordion("Examples", open=True):
gr.Examples(
label="Image Examples",
examples=[
["assets/images/example_{i}.jpg".format(i=i)]
for i in range(
0, len(os.listdir(os.path.join("assets", "images")))
)
],
inputs=input_image,
outputs=output_image,
fn=detector.detect_example,
cache_examples=True,
cache_mode="lazy",
)
with gr.Row(elem_classes="metrics-container"):
with gr.Column(scale=1):
total_inferences = gr.Textbox(
label="Total Inferences", show_copy_button=True, container=True
)
hist_plot = gr.Plot(label="Time Distribution", container=True)
with gr.Column(scale=1):
line_plot = gr.Plot(label="Time History", container=True)
with gr.Row(elem_classes="metrics-row"):
avg_inference_time = gr.Textbox(
label="Average Inference Time (ms)",
show_copy_button=True,
container=True,
)
last_inference_time = gr.Textbox(
label="Last Inference Time (ms)",
show_copy_button=True,
container=True,
)
with gr.Row(elem_classes="container"):
gr.Markdown(
"""
---
## About the Project
This project uses the YOLOv8s model fine-tuned for detecting handwritten signatures in document images. It was trained with data from the [Tobacco800](https://paperswithcode.com/dataset/tobacco-800) and [signatures-xc8up](https://universe.roboflow.com/roboflow-100/signatures-xc8up) datasets, undergoing preprocessing and data augmentation processes.
### Key Metrics:
- **Precision:** 94.74%
- **Recall:** 89.72%
- **mAP@50:** 94.50%
- **mAP@50-95:** 67.35%
- **Inference Time (CPU):** 171.56 ms
Complete details on the training process, hyperparameter tuning, model evaluation, dataset creation, and inference server can be found in the links below.
---
**Developed by [Tech4Humans](https://www.tech4h.com.br/)** | **Model:** [YOLOv8s](https://huggingface.co/tech4humans/yolov8s-signature-detector) | **Dataset:** [Tobacco800 + signatures-xc8up](https://huggingface.co/datasets/tech4humans/signature-detection)
"""
)
clear_single_btn.add([output_image])
clear_folder_btn.add([output_image])
detect_single_btn.click(
fn=process_image,
inputs=[input_image, confidence_threshold, iou_threshold],
outputs=[
output_image,
total_inferences,
hist_plot,
line_plot,
avg_inference_time,
last_inference_time,
],
)
detect_folder_btn.click(
fn=process_folder,
inputs=[input_folder, confidence_threshold, iou_threshold],
outputs=[
output_image,
total_inferences,
hist_plot,
line_plot,
avg_inference_time,
last_inference_time,
],
)
# Carregar métricas iniciais ao carregar a página
iface.load(
fn=detector.load_initial_metrics,
inputs=None,
outputs=[
output_image,
total_inferences,
hist_plot,
line_plot,
avg_inference_time,
last_inference_time,
],
)
return iface
if __name__ == "__main__":
if not os.path.exists(DATABASE_PATH):
os.makedirs(DATABASE_DIR, exist_ok=True)
iface = create_gradio_interface()
iface.launch(ssr_mode=False)
|