Commit
·
1b1427d
1
Parent(s):
4014f2e
feat: adicionar índice inicial ao retorno de métricas e corrigir a ordem dos resultados
Browse files
app.py
CHANGED
|
@@ -93,7 +93,7 @@ class MetricsStorage:
|
|
| 93 |
(limit,),
|
| 94 |
)
|
| 95 |
results = cursor.fetchall()
|
| 96 |
-
return [r[0] for r in results]
|
| 97 |
|
| 98 |
def get_total_inferences(self):
|
| 99 |
"""Get the total number of inferences recorded"""
|
|
@@ -134,10 +134,17 @@ class SignatureDetector:
|
|
| 134 |
|
| 135 |
def get_metrics(self):
|
| 136 |
"""Get current metrics from storage"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
return {
|
| 138 |
-
"times":
|
| 139 |
-
"total_inferences":
|
| 140 |
-
"avg_time":
|
|
|
|
| 141 |
}
|
| 142 |
|
| 143 |
def load_initial_metrics(self):
|
|
@@ -149,9 +156,13 @@ class SignatureDetector:
|
|
| 149 |
|
| 150 |
# Criar plots data
|
| 151 |
hist_data = pd.DataFrame({"Tempo (ms)": metrics["times"]})
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
line_data = pd.DataFrame(
|
| 153 |
{
|
| 154 |
-
"Inferência":
|
| 155 |
"Tempo (ms)": metrics["times"],
|
| 156 |
"Média": [metrics["avg_time"]] * len(metrics["times"]),
|
| 157 |
}
|
|
@@ -161,7 +172,7 @@ class SignatureDetector:
|
|
| 161 |
hist_fig, line_fig = self.create_plots(hist_data, line_data)
|
| 162 |
|
| 163 |
return (
|
| 164 |
-
None,
|
| 165 |
f"Total de Inferências: {metrics['total_inferences']}",
|
| 166 |
hist_fig,
|
| 167 |
line_fig,
|
|
@@ -219,6 +230,10 @@ class SignatureDetector:
|
|
| 219 |
hist_fig.tight_layout()
|
| 220 |
line_fig.tight_layout()
|
| 221 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
return hist_fig, line_fig
|
| 223 |
|
| 224 |
def preprocess(self, img):
|
|
@@ -381,9 +396,13 @@ def create_gradio_interface():
|
|
| 381 |
|
| 382 |
# Create plots data
|
| 383 |
hist_data = pd.DataFrame({"Tempo (ms)": metrics["times"]})
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
line_data = pd.DataFrame(
|
| 385 |
{
|
| 386 |
-
"Inferência":
|
| 387 |
"Tempo (ms)": metrics["times"],
|
| 388 |
"Média": [metrics["avg_time"]] * len(metrics["times"]),
|
| 389 |
}
|
|
|
|
| 93 |
(limit,),
|
| 94 |
)
|
| 95 |
results = cursor.fetchall()
|
| 96 |
+
return [r[0] for r in reversed(results)]
|
| 97 |
|
| 98 |
def get_total_inferences(self):
|
| 99 |
"""Get the total number of inferences recorded"""
|
|
|
|
| 134 |
|
| 135 |
def get_metrics(self):
|
| 136 |
"""Get current metrics from storage"""
|
| 137 |
+
times = self.metrics_storage.get_recent_metrics()
|
| 138 |
+
total = self.metrics_storage.get_total_inferences()
|
| 139 |
+
avg = self.metrics_storage.get_average_time()
|
| 140 |
+
|
| 141 |
+
start_index = max(0, total - len(times))
|
| 142 |
+
|
| 143 |
return {
|
| 144 |
+
"times": times,
|
| 145 |
+
"total_inferences": total,
|
| 146 |
+
"avg_time": avg,
|
| 147 |
+
"start_index": start_index, # Adicionar índice inicial
|
| 148 |
}
|
| 149 |
|
| 150 |
def load_initial_metrics(self):
|
|
|
|
| 156 |
|
| 157 |
# Criar plots data
|
| 158 |
hist_data = pd.DataFrame({"Tempo (ms)": metrics["times"]})
|
| 159 |
+
indices = range(
|
| 160 |
+
metrics["start_index"], metrics["start_index"] + len(metrics["times"])
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
line_data = pd.DataFrame(
|
| 164 |
{
|
| 165 |
+
"Inferência": indices,
|
| 166 |
"Tempo (ms)": metrics["times"],
|
| 167 |
"Média": [metrics["avg_time"]] * len(metrics["times"]),
|
| 168 |
}
|
|
|
|
| 172 |
hist_fig, line_fig = self.create_plots(hist_data, line_data)
|
| 173 |
|
| 174 |
return (
|
| 175 |
+
None,
|
| 176 |
f"Total de Inferências: {metrics['total_inferences']}",
|
| 177 |
hist_fig,
|
| 178 |
line_fig,
|
|
|
|
| 230 |
hist_fig.tight_layout()
|
| 231 |
line_fig.tight_layout()
|
| 232 |
|
| 233 |
+
# Fechar as figuras para liberar memória
|
| 234 |
+
plt.close(hist_fig)
|
| 235 |
+
plt.close(line_fig)
|
| 236 |
+
|
| 237 |
return hist_fig, line_fig
|
| 238 |
|
| 239 |
def preprocess(self, img):
|
|
|
|
| 396 |
|
| 397 |
# Create plots data
|
| 398 |
hist_data = pd.DataFrame({"Tempo (ms)": metrics["times"]})
|
| 399 |
+
indices = range(
|
| 400 |
+
metrics["start_index"], metrics["start_index"] + len(metrics["times"])
|
| 401 |
+
)
|
| 402 |
+
|
| 403 |
line_data = pd.DataFrame(
|
| 404 |
{
|
| 405 |
+
"Inferência": indices,
|
| 406 |
"Tempo (ms)": metrics["times"],
|
| 407 |
"Média": [metrics["avg_time"]] * len(metrics["times"]),
|
| 408 |
}
|