feat: Add typings and english translation
Browse files
app.py
CHANGED
@@ -2,7 +2,9 @@ import os
|
|
2 |
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
|
|
5 |
from PIL import Image
|
|
|
6 |
|
7 |
from constants import MODEL_PATH, DATABASE_DIR, DATABASE_PATH
|
8 |
from detector import SignatureDetector, download_model
|
@@ -51,7 +53,7 @@ def create_gradio_interface():
|
|
51 |
}
|
52 |
"""
|
53 |
|
54 |
-
def process_image(image, conf_thres, iou_thres):
|
55 |
if image is None:
|
56 |
return None, None, None, None, None, None
|
57 |
|
@@ -86,13 +88,13 @@ def create_gradio_interface():
|
|
86 |
f"{metrics['times'][-1]:.2f}",
|
87 |
)
|
88 |
|
89 |
-
def process_folder(
|
90 |
-
if not
|
91 |
return None, None, None, None, None, None
|
92 |
|
93 |
valid_extensions = [".jpg", ".jpeg", ".png"]
|
94 |
image_files = [
|
95 |
-
f for f in
|
96 |
]
|
97 |
|
98 |
if not image_files:
|
@@ -111,7 +113,7 @@ def create_gradio_interface():
|
|
111 |
) as iface:
|
112 |
gr.HTML(
|
113 |
"""
|
114 |
-
<h1>Tech4Humans - Detector
|
115 |
|
116 |
<div style="display: flex; align-items: center; gap: 10px;">
|
117 |
<a href="https://huggingface.co/tech4humans/yolov8s-signature-detector">
|
@@ -128,40 +130,35 @@ def create_gradio_interface():
|
|
128 |
)
|
129 |
gr.Markdown(
|
130 |
"""
|
131 |
-
|
132 |
|
133 |
-
|
134 |
-
aplicações que envolvem validação, organização e processamento de documentos.
|
135 |
|
136 |
---
|
137 |
"""
|
138 |
)
|
139 |
|
140 |
with gr.Row(equal_height=True, elem_classes="main-container"):
|
141 |
-
#
|
142 |
with gr.Column(scale=1):
|
143 |
-
with gr.Tab("
|
144 |
-
input_image = gr.Image(
|
145 |
-
label="Faça o upload do seu documento", type="pil"
|
146 |
-
)
|
147 |
with gr.Row():
|
148 |
-
clear_single_btn = gr.ClearButton([input_image], value="
|
149 |
detect_single_btn = gr.Button(
|
150 |
-
"
|
151 |
)
|
152 |
|
153 |
-
with gr.Tab("
|
154 |
input_folder = gr.File(
|
155 |
-
label="
|
156 |
file_count="directory",
|
157 |
type="filepath",
|
158 |
)
|
159 |
with gr.Row():
|
160 |
-
clear_folder_btn = gr.ClearButton(
|
161 |
-
[input_folder], value="Limpar"
|
162 |
-
)
|
163 |
detect_folder_btn = gr.Button(
|
164 |
-
"
|
165 |
)
|
166 |
|
167 |
with gr.Group():
|
@@ -170,24 +167,24 @@ def create_gradio_interface():
|
|
170 |
maximum=1.0,
|
171 |
value=0.25,
|
172 |
step=0.05,
|
173 |
-
label="
|
174 |
-
info="
|
175 |
)
|
176 |
iou_threshold = gr.Slider(
|
177 |
minimum=0.0,
|
178 |
maximum=1.0,
|
179 |
value=0.5,
|
180 |
step=0.05,
|
181 |
-
label="
|
182 |
-
info="
|
183 |
)
|
184 |
|
185 |
with gr.Column(scale=1):
|
186 |
-
output_image = gr.Image(label="
|
187 |
|
188 |
-
with gr.Accordion("
|
189 |
gr.Examples(
|
190 |
-
label="
|
191 |
examples=[
|
192 |
["assets/images/example_{i}.jpg".format(i=i)]
|
193 |
for i in range(
|
@@ -204,20 +201,20 @@ def create_gradio_interface():
|
|
204 |
with gr.Row(elem_classes="metrics-container"):
|
205 |
with gr.Column(scale=1):
|
206 |
total_inferences = gr.Textbox(
|
207 |
-
label="Total
|
208 |
)
|
209 |
-
hist_plot = gr.Plot(label="
|
210 |
|
211 |
with gr.Column(scale=1):
|
212 |
-
line_plot = gr.Plot(label="
|
213 |
with gr.Row(elem_classes="metrics-row"):
|
214 |
avg_inference_time = gr.Textbox(
|
215 |
-
label="
|
216 |
show_copy_button=True,
|
217 |
container=True,
|
218 |
)
|
219 |
last_inference_time = gr.Textbox(
|
220 |
-
label="
|
221 |
show_copy_button=True,
|
222 |
container=True,
|
223 |
)
|
@@ -227,22 +224,22 @@ def create_gradio_interface():
|
|
227 |
gr.Markdown(
|
228 |
"""
|
229 |
---
|
230 |
-
##
|
231 |
|
232 |
-
|
233 |
|
234 |
-
###
|
235 |
-
- **
|
236 |
-
- **
|
237 |
-
- **mAP@50:** 94
|
238 |
-
- **mAP@50-95:** 67
|
239 |
-
- **
|
240 |
|
241 |
-
|
242 |
|
243 |
---
|
244 |
|
245 |
-
**
|
246 |
"""
|
247 |
)
|
248 |
|
@@ -288,13 +285,13 @@ def create_gradio_interface():
|
|
288 |
last_inference_time,
|
289 |
],
|
290 |
)
|
291 |
-
|
292 |
return iface
|
293 |
|
294 |
|
295 |
if __name__ == "__main__":
|
296 |
if not os.path.exists(DATABASE_PATH):
|
297 |
os.makedirs(DATABASE_DIR, exist_ok=True)
|
298 |
-
|
299 |
iface = create_gradio_interface()
|
300 |
iface.launch()
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
from PIL import Image
|
7 |
+
from typing import Tuple, List
|
8 |
|
9 |
from constants import MODEL_PATH, DATABASE_DIR, DATABASE_PATH
|
10 |
from detector import SignatureDetector, download_model
|
|
|
53 |
}
|
54 |
"""
|
55 |
|
56 |
+
def process_image(image: Image.Image, conf_thres: float, iou_thres: float) -> Tuple[Image.Image, str, plt.Figure, plt.Figure, str, str]:
|
57 |
if image is None:
|
58 |
return None, None, None, None, None, None
|
59 |
|
|
|
88 |
f"{metrics['times'][-1]:.2f}",
|
89 |
)
|
90 |
|
91 |
+
def process_folder(files_paths: List[str], conf_thres: float, iou_thres: float):
|
92 |
+
if not files_paths:
|
93 |
return None, None, None, None, None, None
|
94 |
|
95 |
valid_extensions = [".jpg", ".jpeg", ".png"]
|
96 |
image_files = [
|
97 |
+
f for f in files_paths if os.path.splitext(f.lower())[1] in valid_extensions
|
98 |
]
|
99 |
|
100 |
if not image_files:
|
|
|
113 |
) as iface:
|
114 |
gr.HTML(
|
115 |
"""
|
116 |
+
<h1>Tech4Humans - Signature Detector</h1>
|
117 |
|
118 |
<div style="display: flex; align-items: center; gap: 10px;">
|
119 |
<a href="https://huggingface.co/tech4humans/yolov8s-signature-detector">
|
|
|
130 |
)
|
131 |
gr.Markdown(
|
132 |
"""
|
133 |
+
This system uses the [**YOLOv8s**](https://huggingface.co/tech4humans/yolov8s-signature-detector) model, specially fine-tuned for detecting handwritten signatures in document images.
|
134 |
|
135 |
+
With this detector, it is possible to identify signatures in digital documents with high accuracy in real time, making it ideal for applications involving validation, organization, and document processing.
|
|
|
136 |
|
137 |
---
|
138 |
"""
|
139 |
)
|
140 |
|
141 |
with gr.Row(equal_height=True, elem_classes="main-container"):
|
142 |
+
# Left column for controls and information
|
143 |
with gr.Column(scale=1):
|
144 |
+
with gr.Tab("Single Image"):
|
145 |
+
input_image = gr.Image(label="Upload your document", type="pil")
|
|
|
|
|
146 |
with gr.Row():
|
147 |
+
clear_single_btn = gr.ClearButton([input_image], value="Clear")
|
148 |
detect_single_btn = gr.Button(
|
149 |
+
"Detect", elem_classes="custom-button"
|
150 |
)
|
151 |
|
152 |
+
with gr.Tab("Image Folder"):
|
153 |
input_folder = gr.File(
|
154 |
+
label="Upload a folder with images",
|
155 |
file_count="directory",
|
156 |
type="filepath",
|
157 |
)
|
158 |
with gr.Row():
|
159 |
+
clear_folder_btn = gr.ClearButton([input_folder], value="Clear")
|
|
|
|
|
160 |
detect_folder_btn = gr.Button(
|
161 |
+
"Detect", elem_classes="custom-button"
|
162 |
)
|
163 |
|
164 |
with gr.Group():
|
|
|
167 |
maximum=1.0,
|
168 |
value=0.25,
|
169 |
step=0.05,
|
170 |
+
label="Confidence Threshold",
|
171 |
+
info="Adjust the minimum confidence score required for detection.",
|
172 |
)
|
173 |
iou_threshold = gr.Slider(
|
174 |
minimum=0.0,
|
175 |
maximum=1.0,
|
176 |
value=0.5,
|
177 |
step=0.05,
|
178 |
+
label="IoU Threshold",
|
179 |
+
info="Adjust the Intersection over Union threshold for Non-Maximum Suppression (NMS).",
|
180 |
)
|
181 |
|
182 |
with gr.Column(scale=1):
|
183 |
+
output_image = gr.Image(label="Detection Results")
|
184 |
|
185 |
+
with gr.Accordion("Examples", open=True):
|
186 |
gr.Examples(
|
187 |
+
label="Image Examples",
|
188 |
examples=[
|
189 |
["assets/images/example_{i}.jpg".format(i=i)]
|
190 |
for i in range(
|
|
|
201 |
with gr.Row(elem_classes="metrics-container"):
|
202 |
with gr.Column(scale=1):
|
203 |
total_inferences = gr.Textbox(
|
204 |
+
label="Total Inferences", show_copy_button=True, container=True
|
205 |
)
|
206 |
+
hist_plot = gr.Plot(label="Time Distribution", container=True)
|
207 |
|
208 |
with gr.Column(scale=1):
|
209 |
+
line_plot = gr.Plot(label="Time History", container=True)
|
210 |
with gr.Row(elem_classes="metrics-row"):
|
211 |
avg_inference_time = gr.Textbox(
|
212 |
+
label="Average Inference Time (ms)",
|
213 |
show_copy_button=True,
|
214 |
container=True,
|
215 |
)
|
216 |
last_inference_time = gr.Textbox(
|
217 |
+
label="Last Inference Time (ms)",
|
218 |
show_copy_button=True,
|
219 |
container=True,
|
220 |
)
|
|
|
224 |
gr.Markdown(
|
225 |
"""
|
226 |
---
|
227 |
+
## About the Project
|
228 |
|
229 |
+
This project uses the YOLOv8s model fine-tuned for detecting handwritten signatures in document images. It was trained with data from the [Tobacco800](https://paperswithcode.com/dataset/tobacco-800) and [signatures-xc8up](https://universe.roboflow.com/roboflow-100/signatures-xc8up) datasets, undergoing preprocessing and data augmentation processes.
|
230 |
|
231 |
+
### Key Metrics:
|
232 |
+
- **Precision:** 94.74%
|
233 |
+
- **Recall:** 89.72%
|
234 |
+
- **mAP@50:** 94.50%
|
235 |
+
- **mAP@50-95:** 67.35%
|
236 |
+
- **Inference Time (CPU):** 171.56 ms
|
237 |
|
238 |
+
Complete details on the training process, hyperparameter tuning, model evaluation, dataset creation, and inference server can be found in the links below.
|
239 |
|
240 |
---
|
241 |
|
242 |
+
**Developed by [Tech4Humans](https://www.tech4h.com.br/)** | **Model:** [YOLOv8s](https://huggingface.co/tech4humans/yolov8s-signature-detector) | **Dataset:** [Tobacco800 + signatures-xc8up](https://huggingface.co/datasets/tech4humans/signature-detection)
|
243 |
"""
|
244 |
)
|
245 |
|
|
|
285 |
last_inference_time,
|
286 |
],
|
287 |
)
|
288 |
+
|
289 |
return iface
|
290 |
|
291 |
|
292 |
if __name__ == "__main__":
|
293 |
if not os.path.exists(DATABASE_PATH):
|
294 |
os.makedirs(DATABASE_DIR, exist_ok=True)
|
295 |
+
|
296 |
iface = create_gradio_interface()
|
297 |
iface.launch()
|