|
import json |
|
import math |
|
import sqlite3 |
|
|
|
import streamlit as st |
|
import torch |
|
import torchvision |
|
from PIL import Image |
|
from huggingface_hub import hf_hub_download |
|
from torchvision import transforms |
|
from transformers import AutoModelForImageClassification, AutoConfig |
|
|
|
|
|
st.title("Global Bird Classification App") |
|
|
|
|
|
latitude = st.number_input("Enter latitude (optional)", value=None, format="%f") |
|
longitude = st.number_input("Enter longitude (optional)", value=None, format="%f") |
|
|
|
st.text('Please fill the coordinates before upload image.') |
|
|
|
|
|
uploaded_file = st.file_uploader("Please select an image", type=["jpg", "jpeg", "png"]) |
|
|
|
lang = st.selectbox( |
|
"Result Language", |
|
options=[2, 1, 0], |
|
format_func=lambda x: { |
|
2: "Latina (Nomen Scientificum)", |
|
1: "English (IOC 10.1)", |
|
0: "中文 (中国大陆)", |
|
}[x] |
|
) |
|
|
|
|
|
classify_transforms = transforms.Compose([ |
|
transforms.Resize((224, 224)), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), |
|
]) |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
|
|
def classify_objects(classification_model, image, species_list): |
|
input_tensor = classify_transforms(image).unsqueeze(0).to(device) |
|
with torch.no_grad(): |
|
logits = classification_model(input_tensor)[0] |
|
filtered = get_filtered_predictions(logits, species_list) |
|
return softmax(filtered) |
|
|
|
|
|
def softmax(tuples): |
|
|
|
values = [t[1] for t in tuples] |
|
exp_values = [math.exp(v) for v in values] |
|
sum_exp_values = sum(exp_values) |
|
softmax_values = [ev / sum_exp_values for ev in exp_values] |
|
updated_tuples = [(t[0], softmax_values[i]) for i, t in enumerate(tuples)] |
|
updated_tuples.sort(key=lambda t: t[1], reverse=True) |
|
|
|
return updated_tuples |
|
|
|
|
|
def get_filtered_predictions(predictions: list[float], species_list: list[int]) -> list[tuple[int, float]]: |
|
original = {index: value for index, value in enumerate(predictions)} |
|
|
|
if species_list: |
|
filtered_predictions = [(key, value) for key, value in original.items() if key in species_list] |
|
else: |
|
filtered_predictions = [(key, value) for key, value in original.items()] |
|
|
|
return filtered_predictions |
|
|
|
|
|
class DistributionDB: |
|
def __init__(self, db_path): |
|
self.con = sqlite3.connect(db_path) |
|
self.cur = self.con.cursor() |
|
|
|
|
|
def get_list(self, lat, lng) -> list: |
|
self.cur.execute(f''' |
|
SELECT m.cls |
|
FROM distributions AS d |
|
LEFT OUTER JOIN places AS p |
|
ON p.worldid = d.worldid |
|
LEFT OUTER JOIN sp_cls_map AS m |
|
ON d.species = m.species |
|
WHERE p.south <= {lat} |
|
AND p.north >= {lat} |
|
AND p.east >= {lng} |
|
AND p.west <= {lng} |
|
GROUP BY d.species, m.cls; |
|
''') |
|
|
|
return [row[0] for row in self.cur] |
|
|
|
def close(self): |
|
self.cur.close() |
|
self.con.close() |
|
|
|
|
|
|
|
if uploaded_file is not None: |
|
try: |
|
label_map_path = hf_hub_download(repo_id='sunjiao/osea', filename='bird_info.json') |
|
st.success(f"Successfully downloaded labels from Hugging Face Hub!") |
|
except Exception as e: |
|
st.error(f"Failed to download the file: {e}") |
|
st.stop() |
|
|
|
with open(label_map_path, 'r') as f: |
|
data = f.read() |
|
|
|
bird_info = json.loads(data) |
|
|
|
species_list = None |
|
if latitude and longitude: |
|
try: |
|
sqlite_path = hf_hub_download(repo_id='sunjiao/osea', filename='avonet.db') |
|
st.success(f"Successfully downloaded distribution database from Hugging Face Hub!") |
|
except Exception as e: |
|
st.error(f"Failed to download the file: {e}") |
|
st.stop() |
|
|
|
db = DistributionDB(sqlite_path) |
|
species_list = db.get_list(latitude, longitude) |
|
db.close() |
|
|
|
|
|
image = Image.open(uploaded_file) |
|
|
|
|
|
st.image(image, caption="Uploaded Image", use_container_width=True) |
|
|
|
try: |
|
weight_dict = hf_hub_download(repo_id='sunjiao/osea', filename='pytorch_model.bin') |
|
st.success(f"Successfully downloaded weight dict from Hugging Face Hub!") |
|
except Exception as e: |
|
st.error(f"Failed to download the file: {e}") |
|
st.stop() |
|
|
|
model = torchvision.models.resnet34(num_classes=11000) |
|
model.load_state_dict(torch.load(weight_dict, map_location=device)) |
|
model.eval() |
|
|
|
results = classify_objects(model, image, species_list) |
|
|
|
top3_results = results[:3] |
|
|
|
|
|
st.subheader("Classification Results (Top 3):") |
|
for result in top3_results: |
|
st.write(f"{bird_info[result[0]][lang]}: {result[1]:.4f}") |
|
|
|
|
|
if latitude is not None and longitude is not None: |
|
st.write(f"Entered Latitude: {latitude}, Longitude: {longitude}") |