Sun Jiao
commited on
Commit
·
b886d74
1
Parent(s):
4413319
fix errors.
Browse files- app.py +34 -16
- requirements.txt +4 -3
app.py
CHANGED
|
@@ -4,21 +4,24 @@ import sqlite3
|
|
| 4 |
|
| 5 |
import streamlit as st
|
| 6 |
import torch
|
|
|
|
| 7 |
from PIL import Image
|
| 8 |
from huggingface_hub import hf_hub_download
|
| 9 |
from torchvision import transforms
|
| 10 |
-
from transformers import AutoModelForImageClassification
|
| 11 |
|
| 12 |
# Set the page title
|
| 13 |
st.title("Global Bird Classification App")
|
| 14 |
|
| 15 |
-
# Upload an image
|
| 16 |
-
uploaded_file = st.file_uploader("Please select an image", type=["jpg", "jpeg", "png"])
|
| 17 |
-
|
| 18 |
# Input latitude and longitude (optional)
|
| 19 |
latitude = st.number_input("Enter latitude (optional)", value=None, format="%f")
|
| 20 |
longitude = st.number_input("Enter longitude (optional)", value=None, format="%f")
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
lang = st.selectbox(
|
| 23 |
"Result Language",
|
| 24 |
options=[2, 1, 0],
|
|
@@ -102,18 +105,29 @@ GROUP BY d.species, m.cls;
|
|
| 102 |
# If the user uploads an image
|
| 103 |
if uploaded_file is not None:
|
| 104 |
try:
|
| 105 |
-
sqlite_path = hf_hub_download(repo_id='sunjiao/osea', filename='avonet.db')
|
| 106 |
-
st.success(f"Successfully downloaded distribution database from Hugging Face Hub!")
|
| 107 |
-
|
| 108 |
label_map_path = hf_hub_download(repo_id='sunjiao/osea', filename='bird_info.json')
|
| 109 |
st.success(f"Successfully downloaded labels from Hugging Face Hub!")
|
| 110 |
except Exception as e:
|
| 111 |
st.error(f"Failed to download the file: {e}")
|
| 112 |
st.stop()
|
| 113 |
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
# Open the image
|
| 119 |
image = Image.open(uploaded_file)
|
|
@@ -121,17 +135,21 @@ if uploaded_file is not None:
|
|
| 121 |
# Display the uploaded image
|
| 122 |
st.image(image, caption="Uploaded Image", use_container_width=True)
|
| 123 |
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
results = classify_objects(model, image, species_list)
|
| 127 |
|
| 128 |
top3_results = results[:3]
|
| 129 |
|
| 130 |
-
with open(label_map_path, 'r') as f:
|
| 131 |
-
data = f.read()
|
| 132 |
-
|
| 133 |
-
bird_info = json.loads(data)
|
| 134 |
-
|
| 135 |
# Display the top 3 results and their probabilities
|
| 136 |
st.subheader("Classification Results (Top 3):")
|
| 137 |
for result in top3_results:
|
|
|
|
| 4 |
|
| 5 |
import streamlit as st
|
| 6 |
import torch
|
| 7 |
+
import torchvision
|
| 8 |
from PIL import Image
|
| 9 |
from huggingface_hub import hf_hub_download
|
| 10 |
from torchvision import transforms
|
| 11 |
+
from transformers import AutoModelForImageClassification, AutoConfig
|
| 12 |
|
| 13 |
# Set the page title
|
| 14 |
st.title("Global Bird Classification App")
|
| 15 |
|
|
|
|
|
|
|
|
|
|
| 16 |
# Input latitude and longitude (optional)
|
| 17 |
latitude = st.number_input("Enter latitude (optional)", value=None, format="%f")
|
| 18 |
longitude = st.number_input("Enter longitude (optional)", value=None, format="%f")
|
| 19 |
|
| 20 |
+
st.text('Please fill the coordinates before upload image.')
|
| 21 |
+
|
| 22 |
+
# Upload an image
|
| 23 |
+
uploaded_file = st.file_uploader("Please select an image", type=["jpg", "jpeg", "png"])
|
| 24 |
+
|
| 25 |
lang = st.selectbox(
|
| 26 |
"Result Language",
|
| 27 |
options=[2, 1, 0],
|
|
|
|
| 105 |
# If the user uploads an image
|
| 106 |
if uploaded_file is not None:
|
| 107 |
try:
|
|
|
|
|
|
|
|
|
|
| 108 |
label_map_path = hf_hub_download(repo_id='sunjiao/osea', filename='bird_info.json')
|
| 109 |
st.success(f"Successfully downloaded labels from Hugging Face Hub!")
|
| 110 |
except Exception as e:
|
| 111 |
st.error(f"Failed to download the file: {e}")
|
| 112 |
st.stop()
|
| 113 |
|
| 114 |
+
with open(label_map_path, 'r') as f:
|
| 115 |
+
data = f.read()
|
| 116 |
+
|
| 117 |
+
bird_info = json.loads(data)
|
| 118 |
+
|
| 119 |
+
species_list = None
|
| 120 |
+
if latitude and longitude:
|
| 121 |
+
try:
|
| 122 |
+
sqlite_path = hf_hub_download(repo_id='sunjiao/osea', filename='avonet.db')
|
| 123 |
+
st.success(f"Successfully downloaded distribution database from Hugging Face Hub!")
|
| 124 |
+
except Exception as e:
|
| 125 |
+
st.error(f"Failed to download the file: {e}")
|
| 126 |
+
st.stop()
|
| 127 |
+
|
| 128 |
+
db = DistributionDB(sqlite_path)
|
| 129 |
+
species_list = db.get_list(latitude, longitude)
|
| 130 |
+
db.close()
|
| 131 |
|
| 132 |
# Open the image
|
| 133 |
image = Image.open(uploaded_file)
|
|
|
|
| 135 |
# Display the uploaded image
|
| 136 |
st.image(image, caption="Uploaded Image", use_container_width=True)
|
| 137 |
|
| 138 |
+
try:
|
| 139 |
+
weight_dict = hf_hub_download(repo_id='sunjiao/osea', filename='pytorch_model.bin')
|
| 140 |
+
st.success(f"Successfully downloaded weight dict from Hugging Face Hub!")
|
| 141 |
+
except Exception as e:
|
| 142 |
+
st.error(f"Failed to download the file: {e}")
|
| 143 |
+
st.stop()
|
| 144 |
+
|
| 145 |
+
model = torchvision.models.resnet34(num_classes=11000)
|
| 146 |
+
model.load_state_dict(torch.load(weight_dict, map_location=device))
|
| 147 |
+
model.eval()
|
| 148 |
|
| 149 |
results = classify_objects(model, image, species_list)
|
| 150 |
|
| 151 |
top3_results = results[:3]
|
| 152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
# Display the top 3 results and their probabilities
|
| 154 |
st.subheader("Classification Results (Top 3):")
|
| 155 |
for result in top3_results:
|
requirements.txt
CHANGED
|
@@ -2,8 +2,9 @@ huggingface_hub
|
|
| 2 |
transformers
|
| 3 |
ImageHash==4.3.1
|
| 4 |
openpyxl==3.1.5
|
| 5 |
-
Pillow
|
| 6 |
pyshp==2.3.1
|
| 7 |
-
|
| 8 |
-
|
|
|
|
| 9 |
tqdm==4.67.1
|
|
|
|
| 2 |
transformers
|
| 3 |
ImageHash==4.3.1
|
| 4 |
openpyxl==3.1.5
|
| 5 |
+
Pillow
|
| 6 |
pyshp==2.3.1
|
| 7 |
+
streamlit
|
| 8 |
+
torch
|
| 9 |
+
torchvision
|
| 10 |
tqdm==4.67.1
|