import json import math import sqlite3 import streamlit as st import torch import torchvision from PIL import Image from huggingface_hub import hf_hub_download from torchvision import transforms from transformers import AutoModelForImageClassification, AutoConfig # Set the page title st.title("Global Bird Classification App") # Input latitude and longitude (optional) latitude = st.number_input("Enter latitude (optional)", value=None, format="%f") longitude = st.number_input("Enter longitude (optional)", value=None, format="%f") st.text('Please fill the coordinates before upload image.') # Upload an image uploaded_file = st.file_uploader("Please select an image", type=["jpg", "jpeg", "png"]) lang = st.selectbox( "Result Language", options=[2, 1, 0], format_func=lambda x: { 2: "Latina (Nomen Scientificum)", 1: "English (IOC 10.1)", 0: "中文 (中国大陆)", }[x] ) classify_transforms = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # crop and classification def classify_objects(classification_model, image, species_list): input_tensor = classify_transforms(image).unsqueeze(0).to(device) with torch.no_grad(): logits = classification_model(input_tensor)[0] filtered = get_filtered_predictions(logits, species_list) return softmax(filtered) def softmax(tuples): # `torch.nn.functional.softmax` requires the input to be `Tensor`, so I implemented it myself values = [t[1] for t in tuples] exp_values = [math.exp(v) for v in values] sum_exp_values = sum(exp_values) softmax_values = [ev / sum_exp_values for ev in exp_values] updated_tuples = [(t[0], softmax_values[i]) for i, t in enumerate(tuples)] updated_tuples.sort(key=lambda t: t[1], reverse=True) return updated_tuples def get_filtered_predictions(predictions: list[float], species_list: list[int]) -> list[tuple[int, float]]: original = {index: value for index, value in enumerate(predictions)} if species_list: filtered_predictions = [(key, value) for key, value in original.items() if key in species_list] else: filtered_predictions = [(key, value) for key, value in original.items()] return filtered_predictions class DistributionDB: def __init__(self, db_path): self.con = sqlite3.connect(db_path) self.cur = self.con.cursor() def get_list(self, lat, lng) -> list: self.cur.execute(f''' SELECT m.cls FROM distributions AS d LEFT OUTER JOIN places AS p ON p.worldid = d.worldid LEFT OUTER JOIN sp_cls_map AS m ON d.species = m.species WHERE p.south <= {lat} AND p.north >= {lat} AND p.east >= {lng} AND p.west <= {lng} GROUP BY d.species, m.cls; ''') return [row[0] for row in self.cur] def close(self): self.cur.close() self.con.close() # If the user uploads an image if uploaded_file is not None: try: label_map_path = hf_hub_download(repo_id='sunjiao/osea', filename='bird_info.json') st.success(f"Successfully downloaded labels from Hugging Face Hub!") except Exception as e: st.error(f"Failed to download the file: {e}") st.stop() with open(label_map_path, 'r') as f: data = f.read() bird_info = json.loads(data) species_list = None if latitude and longitude: try: sqlite_path = hf_hub_download(repo_id='sunjiao/osea', filename='avonet.db') st.success(f"Successfully downloaded distribution database from Hugging Face Hub!") except Exception as e: st.error(f"Failed to download the file: {e}") st.stop() db = DistributionDB(sqlite_path) species_list = db.get_list(latitude, longitude) db.close() # Open the image image = Image.open(uploaded_file) # Display the uploaded image st.image(image, caption="Uploaded Image", use_container_width=True) try: weight_dict = hf_hub_download(repo_id='sunjiao/osea', filename='pytorch_model.bin') st.success(f"Successfully downloaded weight dict from Hugging Face Hub!") except Exception as e: st.error(f"Failed to download the file: {e}") st.stop() model = torchvision.models.resnet34(num_classes=11000) model.load_state_dict(torch.load(weight_dict, map_location=device)) model.eval() results = classify_objects(model, image, species_list) top3_results = results[:3] # Display the top 3 results and their probabilities st.subheader("Classification Results (Top 3):") for result in top3_results: st.write(f"{bird_info[result[0]][lang]}: {result[1]:.4f}") # Display latitude and longitude if provided if latitude is not None and longitude is not None: st.write(f"Entered Latitude: {latitude}, Longitude: {longitude}")