Epik / app /deberta_view.py
Minh Q. Le
Added DeBERTa model from previous semester
133dc65
raw
history blame
4.33 kB
import gradio as gr
from app.utils import (
create_input_instruction,
format_prediction_ouptut,
display_sentiment_score_table,
sentiment_flow_plot,
EXAMPLE_CONVERSATIONS,
)
import sys
sys.path.insert(0, "../") # neccesary to load modules outside of app
from app import deberta_model, tokenizer
from preprocessing import preprocess
from Model.DeBERTa.deberta import predict, decode_deberta_label
def deberta_preprocess(input):
result = preprocess.process_user_input(input)
if not result["success"]:
raise gr.Error(result["message"])
data = result["data"]
speakers = [item[1] for item in data]
messages = [item[2] for item in data]
return speakers, messages
def deberta_classifier(input):
speakers, messages = deberta_preprocess(input)
predictions = predict(deberta_model, tokenizer, messages)
# Assuming that there's only one conversation
labels = [decode_deberta_label(pred) for pred in predictions]
output = format_prediction_ouptut(speakers, messages, labels)
return output
def deberta_ui():
with gr.Blocks() as deberta_model:
gr.Markdown(
"""
# Deberta
Building upon the DeBERTa architecture, the model was customized and
retrained on Epik data to classify messages between Visitors and Agents into
corresponding sentiment labels. At the time of training by the team prior to
the Fall 2023 semester, the model was trained on 15 labels, including
Openness, Anxiety, Confusion, Disapproval, Remorse, Accusation, Denial,
Obscenity, Disinterest, Annoyance, Information, Greeting, Interest,
Curiosity, or Acceptance.
The primary difference between DeBERTa and COSMIC is that while DeBERTa's
prediction is solely based on its own context, COSMIC uses the context of
the entire conversation (i.e., all messages from the chat history of the
conversation).
"""
)
create_input_instruction()
with gr.Row():
with gr.Column():
example_dropdown = gr.Dropdown(
choices=["-- Not Selected --"] + list(EXAMPLE_CONVERSATIONS.keys()),
value="-- Not Selected --",
label="Select an example",
)
gr.Markdown('<p style="text-align: center;color: gray;">--- OR ---</p>')
conversation_input = gr.TextArea(
value="",
label="Input you conversation",
placeholder="Plese input your conversation here",
lines=15,
max_lines=15,
)
def on_example_change(input):
if input in EXAMPLE_CONVERSATIONS:
return EXAMPLE_CONVERSATIONS[input]
return ""
example_dropdown.input(
on_example_change,
inputs=example_dropdown,
outputs=conversation_input,
)
with gr.Column():
output = gr.Textbox(
value="",
label="Predicted Sentiment Labels",
lines=22,
max_lines=22,
interactive=False,
)
submit_btn = gr.Button(value="Submit")
submit_btn.click(deberta_classifier, conversation_input, output)
# reset the output whenever a change in the input is detected
conversation_input.change(lambda x: "", conversation_input, output)
gr.Markdown("# Sentiment Flow Plot")
with gr.Row():
with gr.Column(scale=1):
display_sentiment_score_table()
with gr.Column(scale=2):
plot_box = gr.Plot(label="Analysis Plot")
plot_btn = gr.Button(value="Plot Sentiment Flow")
plot_btn.click(sentiment_flow_plot, inputs=[output], outputs=[plot_box])
# reset all outputs whenever a change in the input is detected
conversation_input.change(
lambda x: ("", None),
conversation_input,
outputs=[output, plot_box],
)
return deberta_model