File size: 4,327 Bytes
133dc65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import gradio as gr
from app.utils import (
    create_input_instruction,
    format_prediction_ouptut,
    display_sentiment_score_table,
    sentiment_flow_plot,
    EXAMPLE_CONVERSATIONS,
)

import sys

sys.path.insert(0, "../")  # neccesary to load modules outside of app

from app import deberta_model, tokenizer
from preprocessing import preprocess
from Model.DeBERTa.deberta import predict, decode_deberta_label


def deberta_preprocess(input):
    result = preprocess.process_user_input(input)

    if not result["success"]:
        raise gr.Error(result["message"])

    data = result["data"]
    speakers = [item[1] for item in data]
    messages = [item[2] for item in data]
    return speakers, messages


def deberta_classifier(input):
    speakers, messages = deberta_preprocess(input)

    predictions = predict(deberta_model, tokenizer, messages)

    # Assuming that there's only one conversation
    labels = [decode_deberta_label(pred) for pred in predictions]
    output = format_prediction_ouptut(speakers, messages, labels)

    return output


def deberta_ui():
    with gr.Blocks() as deberta_model:
        gr.Markdown(
            """
            # Deberta
            Building upon the DeBERTa architecture, the model was customized and
            retrained on Epik data to classify messages between Visitors and Agents into
            corresponding sentiment labels. At the time of training by the team prior to
            the Fall 2023 semester, the model was trained on 15 labels, including
            Openness, Anxiety, Confusion, Disapproval, Remorse, Accusation, Denial,
            Obscenity, Disinterest, Annoyance, Information, Greeting, Interest,
            Curiosity, or Acceptance. 
            
            The primary difference between DeBERTa and COSMIC is that while DeBERTa's
            prediction is solely based on its own context, COSMIC uses the context of
            the entire conversation (i.e., all messages from the chat history of the
            conversation).
            """
        )

        create_input_instruction()
        with gr.Row():
            with gr.Column():
                example_dropdown = gr.Dropdown(
                    choices=["-- Not Selected --"] + list(EXAMPLE_CONVERSATIONS.keys()),
                    value="-- Not Selected --",
                    label="Select an example",
                )

                gr.Markdown('<p style="text-align: center;color: gray;">--- OR ---</p>')

                conversation_input = gr.TextArea(
                    value="",
                    label="Input you conversation",
                    placeholder="Plese input your conversation here",
                    lines=15,
                    max_lines=15,
                )

                def on_example_change(input):
                    if input in EXAMPLE_CONVERSATIONS:
                        return EXAMPLE_CONVERSATIONS[input]

                    return ""

                example_dropdown.input(
                    on_example_change,
                    inputs=example_dropdown,
                    outputs=conversation_input,
                )

            with gr.Column():
                output = gr.Textbox(
                    value="",
                    label="Predicted Sentiment Labels",
                    lines=22,
                    max_lines=22,
                    interactive=False,
                )
        submit_btn = gr.Button(value="Submit")
        submit_btn.click(deberta_classifier, conversation_input, output)

        # reset the output whenever a change in the input is detected
        conversation_input.change(lambda x: "", conversation_input, output)

        gr.Markdown("# Sentiment Flow Plot")
        with gr.Row():
            with gr.Column(scale=1):
                display_sentiment_score_table()
            with gr.Column(scale=2):
                plot_box = gr.Plot(label="Analysis Plot")

        plot_btn = gr.Button(value="Plot Sentiment Flow")
        plot_btn.click(sentiment_flow_plot, inputs=[output], outputs=[plot_box])

        # reset all outputs whenever a change in the input is detected
        conversation_input.change(
            lambda x: ("", None),
            conversation_input,
            outputs=[output, plot_box],
        )
    return deberta_model