import gradio as gr from app.utils import ( create_input_instruction, format_prediction_ouptut, display_sentiment_score_table, sentiment_flow_plot, EXAMPLE_CONVERSATIONS, ) import sys sys.path.insert(0, "../") # neccesary to load modules outside of app from app import deberta_model, tokenizer from preprocessing import preprocess from Model.DeBERTa.deberta import predict, decode_deberta_label def deberta_preprocess(input): result = preprocess.process_user_input(input) if not result["success"]: raise gr.Error(result["message"]) data = result["data"] speakers = [item[1] for item in data] messages = [item[2] for item in data] return speakers, messages def deberta_classifier(input): speakers, messages = deberta_preprocess(input) predictions = predict(deberta_model, tokenizer, messages) # Assuming that there's only one conversation labels = [decode_deberta_label(pred) for pred in predictions] output = format_prediction_ouptut(speakers, messages, labels) return output def deberta_ui(): with gr.Blocks() as deberta_model: gr.Markdown( """ # Deberta Building upon the DeBERTa architecture, the model was customized and retrained on Epik data to classify messages between Visitors and Agents into corresponding sentiment labels. At the time of training by the team prior to the Fall 2023 semester, the model was trained on 15 labels, including Openness, Anxiety, Confusion, Disapproval, Remorse, Accusation, Denial, Obscenity, Disinterest, Annoyance, Information, Greeting, Interest, Curiosity, or Acceptance. The primary difference between DeBERTa and COSMIC is that while DeBERTa's prediction is solely based on its own context, COSMIC uses the context of the entire conversation (i.e., all messages from the chat history of the conversation). """ ) create_input_instruction() with gr.Row(): with gr.Column(): example_dropdown = gr.Dropdown( choices=["-- Not Selected --"] + list(EXAMPLE_CONVERSATIONS.keys()), value="-- Not Selected --", label="Select an example", ) gr.Markdown('
--- OR ---
') conversation_input = gr.TextArea( value="", label="Input you conversation", placeholder="Plese input your conversation here", lines=15, max_lines=15, ) def on_example_change(input): if input in EXAMPLE_CONVERSATIONS: return EXAMPLE_CONVERSATIONS[input] return "" example_dropdown.input( on_example_change, inputs=example_dropdown, outputs=conversation_input, ) with gr.Column(): output = gr.Textbox( value="", label="Predicted Sentiment Labels", lines=22, max_lines=22, interactive=False, ) submit_btn = gr.Button(value="Submit") submit_btn.click(deberta_classifier, conversation_input, output) # reset the output whenever a change in the input is detected conversation_input.change(lambda x: "", conversation_input, output) gr.Markdown("# Sentiment Flow Plot") with gr.Row(): with gr.Column(scale=1): display_sentiment_score_table() with gr.Column(scale=2): plot_box = gr.Plot(label="Analysis Plot") plot_btn = gr.Button(value="Plot Sentiment Flow") plot_btn.click(sentiment_flow_plot, inputs=[output], outputs=[plot_box]) # reset all outputs whenever a change in the input is detected conversation_input.change( lambda x: ("", None), conversation_input, outputs=[output, plot_box], ) return deberta_model