Spaces:
Running
on
Zero
Running
on
Zero
#Heavily influenced by https://github.com/facebookresearch/audiocraft/blob/main/audiocraft/modules/conditioners.py | |
import torch | |
import logging, warnings | |
import string | |
import typing as tp | |
import gc | |
from .adp import NumberEmbedder | |
from ..inference.utils import set_audio_channels | |
from .factory import create_pretransform_from_config | |
from .pretransforms import Pretransform | |
from ..training.utils import copy_state_dict | |
from .utils import load_ckpt_state_dict | |
from torch import nn | |
from .Qformer import BertConfig, BertLMHeadModel, BertAttention, BertIntermediate, BertOutput | |
from transformers import BertTokenizer | |
class Conditioner(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
output_dim: int, | |
project_out: bool = False | |
): | |
super().__init__() | |
self.dim = dim | |
self.output_dim = output_dim | |
self.proj_out = nn.Linear(dim, output_dim) if (dim != output_dim or project_out) else nn.Identity() | |
def forward(self, x: tp.Any) -> tp.Any: | |
raise NotImplementedError() | |
class IntConditioner(Conditioner): | |
def __init__(self, | |
output_dim: int, | |
min_val: int=0, | |
max_val: int=512 | |
): | |
super().__init__(output_dim, output_dim) | |
self.min_val = min_val | |
self.max_val = max_val | |
self.int_embedder = nn.Embedding(max_val - min_val + 1, output_dim).requires_grad_(True) | |
def forward(self, ints: tp.List[int], device=None) -> tp.Any: | |
#self.int_embedder.to(device) | |
ints = torch.tensor(ints).to(device) | |
ints = ints.clamp(self.min_val, self.max_val) | |
int_embeds = self.int_embedder(ints).unsqueeze(1) | |
return [int_embeds, torch.ones(int_embeds.shape[0], 1).to(device)] | |
class NumberConditioner(Conditioner): | |
''' | |
Conditioner that takes a list of floats, normalizes them for a given range, and returns a list of embeddings | |
''' | |
def __init__(self, | |
output_dim: int, | |
min_val: float=0, | |
max_val: float=1 | |
): | |
super().__init__(output_dim, output_dim) | |
self.min_val = min_val | |
self.max_val = max_val | |
self.embedder = NumberEmbedder(features=output_dim) | |
def forward(self, floats: tp.List[float], device=None) -> tp.Any: | |
# Cast the inputs to floats | |
floats = [float(x) for x in floats] | |
floats = torch.tensor(floats).to(device) | |
floats = floats.clamp(self.min_val, self.max_val) | |
normalized_floats = (floats - self.min_val) / (self.max_val - self.min_val) | |
# Cast floats to same type as embedder | |
embedder_dtype = next(self.embedder.parameters()).dtype | |
normalized_floats = normalized_floats.to(embedder_dtype) | |
float_embeds = self.embedder(normalized_floats).unsqueeze(1) | |
return [float_embeds, torch.ones(float_embeds.shape[0], 1).to(device)] | |
class CLAPTextConditioner(Conditioner): | |
def __init__(self, | |
output_dim: int, | |
clap_ckpt_path, | |
use_text_features = False, | |
feature_layer_ix: int = -1, | |
audio_model_type="HTSAT-base", | |
enable_fusion=True, | |
project_out: bool = False, | |
finetune: bool = False): | |
super().__init__(768 if use_text_features else 512, output_dim, project_out=project_out) | |
self.use_text_features = use_text_features | |
self.feature_layer_ix = feature_layer_ix | |
self.finetune = finetune | |
# Suppress logging from transformers | |
previous_level = logging.root.manager.disable | |
logging.disable(logging.ERROR) | |
with warnings.catch_warnings(): | |
warnings.simplefilter("ignore") | |
try: | |
import laion_clap | |
from laion_clap.clap_module.factory import load_state_dict as clap_load_state_dict | |
model = laion_clap.CLAP_Module(enable_fusion=enable_fusion, amodel=audio_model_type, device='cpu') | |
if self.finetune: | |
self.model = model | |
else: | |
self.__dict__["model"] = model | |
state_dict = clap_load_state_dict(clap_ckpt_path) | |
self.model.model.load_state_dict(state_dict, strict=False) | |
if self.finetune: | |
self.model.model.text_branch.requires_grad_(True) | |
self.model.model.text_branch.train() | |
else: | |
self.model.model.text_branch.requires_grad_(False) | |
self.model.model.text_branch.eval() | |
finally: | |
logging.disable(previous_level) | |
del self.model.model.audio_branch | |
gc.collect() | |
torch.cuda.empty_cache() | |
def get_clap_features(self, prompts, layer_ix=-2, device: tp.Any = "cuda"): | |
prompt_tokens = self.model.tokenizer(prompts) | |
attention_mask = prompt_tokens["attention_mask"].to(device=device, non_blocking=True) | |
prompt_features = self.model.model.text_branch( | |
input_ids=prompt_tokens["input_ids"].to(device=device, non_blocking=True), | |
attention_mask=attention_mask, | |
output_hidden_states=True | |
)["hidden_states"][layer_ix] | |
return prompt_features, attention_mask | |
def forward(self, texts: tp.List[str], device: tp.Any = "cuda") -> tp.Any: | |
self.model.to(device) | |
if self.use_text_features: | |
if len(texts) == 1: | |
text_features, text_attention_mask = self.get_clap_features([texts[0], ""], layer_ix=self.feature_layer_ix, device=device) | |
text_features = text_features[:1, ...] | |
text_attention_mask = text_attention_mask[:1, ...] | |
else: | |
text_features, text_attention_mask = self.get_clap_features(texts, layer_ix=self.feature_layer_ix, device=device) | |
return [self.proj_out(text_features), text_attention_mask] | |
# Fix for CLAP bug when only one text is passed | |
if len(texts) == 1: | |
text_embedding = self.model.get_text_embedding([texts[0], ""], use_tensor=True)[:1, ...] | |
else: | |
text_embedding = self.model.get_text_embedding(texts, use_tensor=True) | |
text_embedding = text_embedding.unsqueeze(1).to(device) | |
return [self.proj_out(text_embedding), torch.ones(text_embedding.shape[0], 1).to(device)] | |
class CLAPAudioConditioner(Conditioner): | |
def __init__(self, | |
output_dim: int, | |
clap_ckpt_path, | |
audio_model_type="HTSAT-base", | |
enable_fusion=True, | |
project_out: bool = False): | |
super().__init__(512, output_dim, project_out=project_out) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# Suppress logging from transformers | |
previous_level = logging.root.manager.disable | |
logging.disable(logging.ERROR) | |
with warnings.catch_warnings(): | |
warnings.simplefilter("ignore") | |
try: | |
import laion_clap | |
from laion_clap.clap_module.factory import load_state_dict as clap_load_state_dict | |
model = laion_clap.CLAP_Module(enable_fusion=enable_fusion, amodel=audio_model_type, device='cpu') | |
if self.finetune: | |
self.model = model | |
else: | |
self.__dict__["model"] = model | |
state_dict = clap_load_state_dict(clap_ckpt_path) | |
self.model.model.load_state_dict(state_dict, strict=False) | |
if self.finetune: | |
self.model.model.audio_branch.requires_grad_(True) | |
self.model.model.audio_branch.train() | |
else: | |
self.model.model.audio_branch.requires_grad_(False) | |
self.model.model.audio_branch.eval() | |
finally: | |
logging.disable(previous_level) | |
del self.model.model.text_branch | |
gc.collect() | |
torch.cuda.empty_cache() | |
def forward(self, audios: tp.Union[torch.Tensor, tp.List[torch.Tensor], tp.Tuple[torch.Tensor]] , device: tp.Any = "cuda") -> tp.Any: | |
self.model.to(device) | |
if isinstance(audios, list) or isinstance(audios, tuple): | |
audios = torch.cat(audios, dim=0) | |
# Convert to mono | |
mono_audios = audios.mean(dim=1) | |
with torch.cuda.amp.autocast(enabled=False): | |
audio_embedding = self.model.get_audio_embedding_from_data(mono_audios.float(), use_tensor=True) | |
audio_embedding = audio_embedding.unsqueeze(1).to(device) | |
return [self.proj_out(audio_embedding), torch.ones(audio_embedding.shape[0], 1).to(device)] | |
def disabled_train(self, mode=True): | |
"""Overwrite model.train with this function to make sure train/eval mode | |
does not change anymore.""" | |
return self | |
# Define BertLayer for cross attention | |
from .Qformer import BertConfig, BertLMHeadModel, BertAttention, BertIntermediate, BertOutput | |
from transformers.modeling_utils import ( | |
PreTrainedModel, | |
apply_chunking_to_forward, | |
find_pruneable_heads_and_indices, | |
prune_linear_layer, | |
) | |
class BertLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
self.attention = BertAttention(config) | |
self.crossattention = BertAttention( | |
config, is_cross_attention=True | |
) | |
self.has_cross_attention = True | |
self.intermediate = BertIntermediate(config) | |
self.output = BertOutput(config) | |
self.intermediate_query = BertIntermediate(config) | |
self.output_query = BertOutput(config) | |
def feed_forward_chunk(self, attention_output): | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.output(intermediate_output, attention_output) | |
return layer_output | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
past_key_value=None, | |
output_attentions=False, | |
query_length=0, | |
): | |
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2 | |
self_attn_past_key_value = None | |
self_attention_outputs = self.attention( | |
hidden_states, | |
attention_mask, | |
head_mask, | |
output_attentions=output_attentions, | |
past_key_value=self_attn_past_key_value, | |
) | |
attention_output = self_attention_outputs[0] | |
outputs = self_attention_outputs[1:-1] | |
present_key_value = self_attention_outputs[-1] | |
cross_attention_outputs = self.crossattention( | |
attention_output, | |
attention_mask, | |
head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
output_attentions=output_attentions, | |
) | |
outputs = ( | |
outputs + cross_attention_outputs[1:-1] | |
) # add cross attentions if we output attention weights | |
layer_output = apply_chunking_to_forward( | |
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output | |
) | |
outputs = (layer_output,) + outputs | |
outputs = outputs + (present_key_value,) | |
return outputs | |
class T5Conditioner(Conditioner): | |
T5_MODELS = ["t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b", | |
"google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large", | |
"google/flan-t5-xl", "google/flan-t5-xxl"] | |
T5_MODEL_DIMS = { | |
"t5-small": 512, | |
"t5-base": 768, | |
"t5-large": 1024, | |
"t5-3b": 1024, | |
"t5-11b": 1024, | |
"t5-xl": 2048, | |
"t5-xxl": 4096, | |
"google/flan-t5-small": 512, | |
"google/flan-t5-base": 768, | |
"google/flan-t5-large": 1024, | |
"google/flan-t5-3b": 1024, | |
"google/flan-t5-11b": 1024, | |
"google/flan-t5-xl": 2048, | |
"google/flan-t5-xxl": 4096, | |
} | |
def init_Qformer(cls, num_query_token, vision_width, freeze, cross_attention_freq=2): | |
encoder_config = BertConfig.from_pretrained("bert-base-uncased") | |
encoder_config.encoder_width = vision_width | |
# insert cross-attention layer every other block | |
encoder_config.add_cross_attention = True | |
encoder_config.cross_attention_freq = cross_attention_freq | |
encoder_config.query_length = num_query_token | |
Qformer = BertLMHeadModel.from_pretrained( | |
"bert-base-uncased", config=encoder_config | |
) | |
qformer_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", truncation_side="right") | |
qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"}) | |
Qformer.resize_token_embeddings(len(qformer_tokenizer)) | |
query_tokens = nn.Parameter( | |
torch.zeros(1, num_query_token, encoder_config.hidden_size) | |
) | |
query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range) | |
# optional, if not loading weights | |
Qformer.cls = None | |
Qformer.bert.embeddings.word_embeddings = None | |
Qformer.bert.embeddings.position_embeddings = None | |
for layer in Qformer.bert.encoder.layer: | |
layer.output = None | |
layer.intermediate = None | |
if freeze: | |
for name, param in Qformer.named_parameters(): | |
param.requires_grad = False | |
Qformer = Qformer.eval() | |
Qformer.train = disabled_train | |
query_tokens.requires_grad = False | |
print("freeze Qformer") | |
return Qformer, query_tokens | |
def __init__( | |
self, | |
output_dim: int, | |
t5_model_name: str = "t5-base", | |
max_length: str = 128, | |
enable_grad: bool = False, | |
project_out: bool = False | |
): | |
assert t5_model_name in self.T5_MODELS, f"Unknown T5 model name: {t5_model_name}" | |
super().__init__(self.T5_MODEL_DIMS[t5_model_name], output_dim, project_out=project_out) | |
from transformers import T5EncoderModel, AutoTokenizer, AutoModel | |
from peft import ( | |
LoraConfig, | |
get_peft_model, | |
get_peft_model_state_dict, | |
set_peft_model_state_dict, | |
) | |
self.qformer_proj_norm = nn.LayerNorm(768) | |
self.audio_proj_norm_qformer = nn.LayerNorm(768, elementwise_affine=False) | |
# Cross attention layer for qformer and t5 | |
bert_config = BertConfig.from_pretrained('bert-base-uncased') | |
bert_config.encoder_width = 768 | |
self.cross_attend = BertLayer(bert_config) | |
# self.proj_out_cross = nn.Linear(1024,768) | |
self.max_length = max_length | |
self.enable_grad = enable_grad | |
# Suppress logging from transformers | |
previous_level = logging.root.manager.disable | |
logging.disable(logging.ERROR) | |
with warnings.catch_warnings(): | |
warnings.simplefilter("ignore") | |
try: | |
# self.tokenizer = T5Tokenizer.from_pretrained(t5_model_name, model_max_length = max_length) | |
# model = T5EncoderModel.from_pretrained(t5_model_name, max_length=max_length).train(enable_grad).requires_grad_(enable_grad) | |
self.tokenizer = AutoTokenizer.from_pretrained(t5_model_name) | |
ckpt = torch.load('/fs/nexus-projects/brain_project/try_t5.pt') | |
model = T5EncoderModel.from_pretrained(t5_model_name).train(enable_grad).requires_grad_(enable_grad).to(torch.float16) | |
model.load_state_dict(ckpt,strict=True) | |
self.llm_model = AutoModel.from_pretrained( | |
"meta-llama/Meta-Llama-3.1-8B", | |
load_in_8bit=False, | |
# torch_dtype=torch.float16, | |
device_map="auto", | |
) | |
self.llm_model_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B") | |
self.num_new_tokens = 64 | |
self.IGNORE_TOKEN_ID=-100 | |
# 1. LLM has the special token "<ad>" for system message to generate image -> add_tokens "<img>" -> 32000 | |
self.llm_model_tokenizer.add_tokens(["<ad>"], special_tokens=False) | |
# 2. LLM contains 64 tokens to summarize image and text information for conversation system -> add_tokens "<img_0>...<img_63>" -> 32001~32064 | |
new_token_list = [f"<ad_{i}>" for i in range(self.num_new_tokens)] | |
self.llm_model_tokenizer.add_tokens(new_token_list, special_tokens=False) | |
# 3. count new tokens and resize tokenizer | |
self.num_new_tokens = self.num_new_tokens + 1 | |
self.llm_model.resize_token_embeddings(len(self.llm_model_tokenizer)) | |
self.llm_model_tokenizer.ad_start_token_id = self.llm_model_tokenizer.convert_tokens_to_ids("<ad_0>") | |
# ------------------- # | |
# build new lm head | |
self.lm_head = nn.Linear(4096, len(self.llm_model_tokenizer), bias=False) | |
# initialize a new variable to store vocab_size | |
self.vocab_size = len(self.llm_model_tokenizer) | |
# 4. Initialize the new embeddings with original embeddings | |
input_embeddings = self.llm_model.model.embed_tokens.weight.data | |
output_embeddings = self.llm_model.lm_head.weight.data | |
self.original_LLM_word_embedding_0 = input_embeddings[0] | |
self.original_LLM_language_model_head_0 = output_embeddings[0] | |
# ------------- # | |
input_embeddings_avg = input_embeddings[:-self.num_new_tokens].mean(dim=0, keepdim=True) | |
output_embeddings_avg = output_embeddings[:-self.num_new_tokens].mean(dim=0, keepdim=True) | |
# ------------- # | |
input_embeddings[-self.num_new_tokens:] = input_embeddings_avg | |
output_embeddings[-self.num_new_tokens:] = output_embeddings_avg | |
# ------------- # | |
self.llm_model.model.embed_tokens.weight.data = input_embeddings | |
self.lm_head.weight.data = output_embeddings | |
# 5. Initialize the Qformer | |
self.Qformer, self.query_tokens = self.init_Qformer(32, 768, True) | |
self.llm_to_qformer_projection = nn.Linear(4096,768) | |
# Add lora modules to the model | |
config = LoraConfig(r=8, lora_alpha=16, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none", task_type='CAUSAL_LM') | |
self.llm_model = get_peft_model(self.llm_model, config) | |
finally: | |
logging.disable(previous_level) | |
if self.enable_grad: | |
self.model = model | |
else: | |
self.__dict__["model"] = model | |
def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]: | |
llm_input_ids = [] | |
llm_input_attention_mask = [] | |
llm_targets_list = [] | |
qformer_input_attention_mask = [] | |
for text in texts: | |
# define a system prompt for the LLM | |
llm_caption_system = "A chat between a curious user and an artificial intelligence assistant. The assistant can generate <ad>. " | |
# construct the prompt for the LLM | |
llm_caption_interim = "Please generate an audio for the following caption: " + text | |
llm_caption_last = " Here is the audio for the given caption: [ad]" | |
append_str = "" | |
for i in range(self.num_new_tokens - 1): | |
append_str += f" <ad_{i}>" | |
llm_caption = llm_caption_last.replace(" [ad]", append_str) | |
# add the system prompt to the LLM prompt | |
llm_caption = llm_caption_system + llm_caption_interim + llm_caption_last | |
# tokenize the prompt | |
input_ids_max_len = 512 | |
llm_caption_input_ids = self.llm_model_tokenizer( | |
llm_caption, | |
return_tensors="pt", | |
padding="max_length", | |
max_length=input_ids_max_len, | |
truncation=True, | |
).input_ids[0] | |
# generate LLM targets | |
llm_targets = llm_caption_input_ids.clone() | |
llm_targets[:1] = self.IGNORE_TOKEN_ID | |
total_padding_len = int(llm_targets.ne(self.llm_model_tokenizer.pad_token_id).sum()) | |
instruction_len = len( | |
self.llm_model_tokenizer( | |
llm_caption_system + llm_caption_interim, | |
max_length=input_ids_max_len, | |
truncation=True, | |
).input_ids) - 2 | |
llm_targets[1:(1 + instruction_len)] = self.IGNORE_TOKEN_ID | |
llm_targets[total_padding_len:] = self.IGNORE_TOKEN_ID | |
# append all | |
llm_input_ids.append(llm_caption_input_ids) | |
llm_input_attention_mask.append(llm_caption_input_ids.ne(self.llm_model_tokenizer.pad_token_id)) | |
llm_targets_list.append(llm_targets) | |
qformer_input_attention_mask.append(llm_caption_input_ids.ge(self.llm_model_tokenizer.ad_start_token_id)) | |
llm_input_ids = torch.stack([torch.tensor(input_id) for input_id in llm_input_ids]).to(device) | |
llm_input_attention_mask = torch.stack([torch.tensor(attention_mask) for attention_mask in llm_input_attention_mask]).to(device) | |
llm_targets = torch.stack([torch.tensor(llm_target) for llm_target in llm_targets_list]).to(device) | |
qformer_input_attention_mask = torch.stack([torch.tensor(qformer_attention_mask) for qformer_attention_mask in qformer_input_attention_mask]).to(device) | |
# LLM Model | |
llm_outputs = self.llm_model.model( | |
input_ids=llm_input_ids, | |
attention_mask=llm_input_attention_mask, | |
position_ids=None, | |
past_key_values=None, | |
use_cache=None, | |
output_attentions=False, | |
output_hidden_states=False, | |
return_dict=False, | |
) | |
hidden_states_llm = llm_outputs[0] | |
shift_labels = llm_targets[..., 1:].contiguous() | |
# 5. Next token prediction language model loss: Enable model parallelism | |
hidden_states = hidden_states_llm.to(torch.float32) | |
logits = self.lm_head(hidden_states) | |
shift_logits = logits[..., :-1, :].contiguous() | |
# Flatten the tokens | |
ce_loss_fct = nn.CrossEntropyLoss() | |
shift_logits = shift_logits.view(-1, self.vocab_size) | |
shift_labels = shift_labels.view(-1) | |
shift_labels = shift_labels.to(shift_logits.device) | |
LM_loss = ce_loss_fct(shift_logits, shift_labels) * 1.0 #self.config.llm_loss_weight | |
# for qformer | |
hidden_states_llm = self.llm_to_qformer_projection(hidden_states_llm[:, :512, :]) # cut it to 512 max | |
audio_input_for_qformer = self.qformer_proj_norm(hidden_states_llm) | |
# audio_atts = torch.ones(audio_input_for_qformer.size()[:-1], dtype=torch.long).to(device) # can and should we convert the attention to pay attention only to the non padded tokens | |
query_tokens = self.query_tokens.expand(audio_input_for_qformer.shape[0], -1, -1) | |
query_output = self.Qformer.bert( | |
query_embeds=query_tokens, | |
encoder_hidden_states=audio_input_for_qformer, | |
encoder_attention_mask=qformer_input_attention_mask, | |
return_dict=True, | |
) | |
query_output = self.audio_proj_norm_qformer(query_output.last_hidden_state) | |
# T5 model | |
self.model.to(device) | |
self.proj_out.to(device) | |
# self.proj_out_cross.to(device) | |
encoded = self.tokenizer( | |
texts, | |
truncation=True, | |
max_length=self.max_length, | |
padding="max_length", | |
return_tensors="pt", | |
) | |
input_ids = encoded["input_ids"].to(device) | |
attention_mask = encoded["attention_mask"].to(device).to(torch.bool) | |
self.model.eval() | |
with torch.cuda.amp.autocast(dtype=torch.float16) and torch.set_grad_enabled(self.enable_grad): | |
embeddings = self.model( | |
input_ids=input_ids, attention_mask=attention_mask | |
)["last_hidden_state"] | |
embeddings = self.proj_out(embeddings.float()) | |
embeddings = embeddings * attention_mask.unsqueeze(-1).float() | |
# -----------------# | |
# cross attention between qformer and t5 | |
qformer_attns = torch.ones(query_output.size()[:-1], dtype=torch.long).to(device) | |
qformer_attns = self.get_bert_extended_attention_mask(qformer_attns, query_output.size()[:-1], device, False) | |
embeddings = self.cross_attend(query_output,attention_mask=qformer_attns,encoder_hidden_states=embeddings,encoder_attention_mask=attention_mask) | |
return embeddings, attention_mask, LM_loss | |
class PhonemeConditioner(Conditioner): | |
""" | |
A conditioner that turns text into phonemes and embeds them using a lookup table | |
Only works for English text | |
Args: | |
output_dim: the dimension of the output embeddings | |
max_length: the maximum number of phonemes to embed | |
project_out: whether to add another linear projection to the output embeddings | |
""" | |
def __init__( | |
self, | |
output_dim: int, | |
max_length: int = 1024, | |
project_out: bool = False, | |
): | |
super().__init__(output_dim, output_dim, project_out=project_out) | |
from g2p_en import G2p | |
self.max_length = max_length | |
self.g2p = G2p() | |
# Reserving 0 for padding, 1 for ignored | |
self.phoneme_embedder = nn.Embedding(len(self.g2p.phonemes) + 2, output_dim) | |
def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]: | |
self.phoneme_embedder.to(device) | |
self.proj_out.to(device) | |
batch_phonemes = [self.g2p(text) for text in texts] # shape [batch_size, length] | |
phoneme_ignore = [" ", *string.punctuation] | |
# Remove ignored phonemes and cut to max length | |
batch_phonemes = [[p if p not in phoneme_ignore else "_" for p in phonemes] for phonemes in batch_phonemes] | |
# Convert to ids | |
phoneme_ids = [[self.g2p.p2idx[p] + 2 if p in self.g2p.p2idx else 1 for p in phonemes] for phonemes in batch_phonemes] | |
#Pad to match longest and make a mask tensor for the padding | |
longest = max([len(ids) for ids in phoneme_ids]) | |
phoneme_ids = [ids + [0] * (longest - len(ids)) for ids in phoneme_ids] | |
phoneme_ids = torch.tensor(phoneme_ids).to(device) | |
# Convert to embeddings | |
phoneme_embeds = self.phoneme_embedder(phoneme_ids) | |
phoneme_embeds = self.proj_out(phoneme_embeds) | |
return phoneme_embeds, torch.ones(phoneme_embeds.shape[0], phoneme_embeds.shape[1]).to(device) | |
class TokenizerLUTConditioner(Conditioner): | |
""" | |
A conditioner that embeds text using a lookup table on a pretrained tokenizer's vocabulary | |
Args: | |
tokenizer_name: the name of the tokenizer from the Hugging Face transformers library | |
output_dim: the dimension of the output embeddings | |
max_length: the maximum length of the text to embed | |
project_out: whether to add another linear projection to the output embeddings | |
""" | |
def __init__( | |
self, | |
tokenizer_name: str, # Name of a tokenizer from the Hugging Face transformers library | |
output_dim: int, | |
max_length: int = 1024, | |
project_out: bool = False, | |
): | |
super().__init__(output_dim, output_dim, project_out=project_out) | |
from transformers import AutoTokenizer | |
# Suppress logging from transformers | |
previous_level = logging.root.manager.disable | |
logging.disable(logging.ERROR) | |
with warnings.catch_warnings(): | |
warnings.simplefilter("ignore") | |
try: | |
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) | |
finally: | |
logging.disable(previous_level) | |
self.max_length = max_length | |
self.token_embedder = nn.Embedding(len(self.tokenizer), output_dim) | |
def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]: | |
self.proj_out.to(device) | |
encoded = self.tokenizer( | |
texts, | |
truncation=True, | |
max_length=self.max_length, | |
padding="max_length", | |
return_tensors="pt", | |
) | |
input_ids = encoded["input_ids"].to(device) | |
attention_mask = encoded["attention_mask"].to(device).to(torch.bool) | |
embeddings = self.token_embedder(input_ids) | |
embeddings = self.proj_out(embeddings) | |
embeddings = embeddings * attention_mask.unsqueeze(-1).float() | |
return embeddings, attention_mask | |
class PretransformConditioner(Conditioner): | |
""" | |
A conditioner that uses a pretransform's encoder for conditioning | |
Args: | |
pretransform: an instantiated pretransform to use for conditioning | |
output_dim: the dimension of the output embeddings | |
""" | |
def __init__(self, pretransform: Pretransform, output_dim: int): | |
super().__init__(pretransform.encoded_channels, output_dim) | |
self.pretransform = pretransform | |
def forward(self, audio: tp.Union[torch.Tensor, tp.List[torch.Tensor], tp.Tuple[torch.Tensor]], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]: | |
self.pretransform.to(device) | |
self.proj_out.to(device) | |
if isinstance(audio, list) or isinstance(audio, tuple): | |
audio = torch.cat(audio, dim=0) | |
# Convert audio to pretransform input channels | |
audio = set_audio_channels(audio, self.pretransform.io_channels) | |
latents = self.pretransform.encode(audio) | |
latents = self.proj_out(latents) | |
return [latents, torch.ones(latents.shape[0], latents.shape[2]).to(latents.device)] | |
class MultiConditioner(nn.Module): | |
""" | |
A module that applies multiple conditioners to an input dictionary based on the keys | |
Args: | |
conditioners: a dictionary of conditioners with keys corresponding to the keys of the conditioning input dictionary (e.g. "prompt") | |
default_keys: a dictionary of default keys to use if the key is not in the input dictionary (e.g. {"prompt_t5": "prompt"}) | |
""" | |
def __init__(self, conditioners: tp.Dict[str, Conditioner], default_keys: tp.Dict[str, str] = {}): | |
super().__init__() | |
self.conditioners = nn.ModuleDict(conditioners) | |
self.default_keys = default_keys | |
def forward(self, batch_metadata: tp.List[tp.Dict[str, tp.Any]], device: tp.Union[torch.device, str]) -> tp.Dict[str, tp.Any]: | |
output = {} | |
for key, conditioner in self.conditioners.items(): | |
condition_key = key | |
conditioner_inputs = [] | |
for x in batch_metadata: | |
if condition_key not in x: | |
if condition_key in self.default_keys: | |
condition_key = self.default_keys[condition_key] | |
else: | |
raise ValueError(f"Conditioner key {condition_key} not found in batch metadata") | |
#Unwrap the condition info if it's a single-element list or tuple, this is to support collation functions that wrap everything in a list | |
if isinstance(x[condition_key], list) or isinstance(x[condition_key], tuple) and len(x[condition_key]) == 1: | |
conditioner_input = x[condition_key][0] | |
else: | |
conditioner_input = x[condition_key] | |
# if isinstance(conditioner_input, dict): | |
# if len(conditioner_inputs) == 0: | |
# conditioner_inputs = {C:[] for C in conditioner_input} | |
# for cond in conditioner_input: | |
# conditioner_inputs[cond].append(conditioner_input[cond]) | |
# else: | |
conditioner_inputs.append(conditioner_input) | |
output[key] = conditioner(conditioner_inputs, device) | |
return output | |
def create_multi_conditioner_from_conditioning_config(config: tp.Dict[str, tp.Any]) -> MultiConditioner: | |
""" | |
Create a MultiConditioner from a conditioning config dictionary | |
Args: | |
config: the conditioning config dictionary | |
device: the device to put the conditioners on | |
""" | |
conditioners = {} | |
cond_dim = config["cond_dim"] | |
default_keys = config.get("default_keys", {}) | |
for conditioner_info in config["configs"]: | |
id = conditioner_info["id"] | |
conditioner_type = conditioner_info["type"] | |
conditioner_config = {"output_dim": cond_dim} | |
conditioner_config.update(conditioner_info["config"]) | |
if conditioner_type == "t5": | |
conditioners[id] = T5Conditioner(**conditioner_config) | |
elif conditioner_type == "clap_text": | |
conditioners[id] = CLAPTextConditioner(**conditioner_config) | |
elif conditioner_type == "clap_audio": | |
conditioners[id] = CLAPAudioConditioner(**conditioner_config) | |
elif conditioner_type == "int": | |
conditioners[id] = IntConditioner(**conditioner_config) | |
elif conditioner_type == "number": | |
conditioners[id] = NumberConditioner(**conditioner_config) | |
elif conditioner_type == "phoneme": | |
conditioners[id] = PhonemeConditioner(**conditioner_config) | |
elif conditioner_type == "lut": | |
conditioners[id] = TokenizerLUTConditioner(**conditioner_config) | |
elif conditioner_type == "pretransform": | |
sample_rate = conditioner_config.pop("sample_rate", None) | |
assert sample_rate is not None, "Sample rate must be specified for pretransform conditioners" | |
pretransform = create_pretransform_from_config(conditioner_config.pop("pretransform_config"), sample_rate=sample_rate) | |
if conditioner_config.get("pretransform_ckpt_path", None) is not None: | |
pretransform.load_state_dict(load_ckpt_state_dict(conditioner_config.pop("pretransform_ckpt_path"))) | |
conditioners[id] = PretransformConditioner(pretransform, **conditioner_config) | |
else: | |
raise ValueError(f"Unknown conditioner type: {conditioner_type}") | |
return MultiConditioner(conditioners, default_keys=default_keys) |