#Heavily influenced by https://github.com/facebookresearch/audiocraft/blob/main/audiocraft/modules/conditioners.py import torch import logging, warnings import string import typing as tp import gc from .adp import NumberEmbedder from ..inference.utils import set_audio_channels from .factory import create_pretransform_from_config from .pretransforms import Pretransform from ..training.utils import copy_state_dict from .utils import load_ckpt_state_dict from torch import nn from .Qformer import BertConfig, BertLMHeadModel, BertAttention, BertIntermediate, BertOutput from transformers import BertTokenizer class Conditioner(nn.Module): def __init__( self, dim: int, output_dim: int, project_out: bool = False ): super().__init__() self.dim = dim self.output_dim = output_dim self.proj_out = nn.Linear(dim, output_dim) if (dim != output_dim or project_out) else nn.Identity() def forward(self, x: tp.Any) -> tp.Any: raise NotImplementedError() class IntConditioner(Conditioner): def __init__(self, output_dim: int, min_val: int=0, max_val: int=512 ): super().__init__(output_dim, output_dim) self.min_val = min_val self.max_val = max_val self.int_embedder = nn.Embedding(max_val - min_val + 1, output_dim).requires_grad_(True) def forward(self, ints: tp.List[int], device=None) -> tp.Any: #self.int_embedder.to(device) ints = torch.tensor(ints).to(device) ints = ints.clamp(self.min_val, self.max_val) int_embeds = self.int_embedder(ints).unsqueeze(1) return [int_embeds, torch.ones(int_embeds.shape[0], 1).to(device)] class NumberConditioner(Conditioner): ''' Conditioner that takes a list of floats, normalizes them for a given range, and returns a list of embeddings ''' def __init__(self, output_dim: int, min_val: float=0, max_val: float=1 ): super().__init__(output_dim, output_dim) self.min_val = min_val self.max_val = max_val self.embedder = NumberEmbedder(features=output_dim) def forward(self, floats: tp.List[float], device=None) -> tp.Any: # Cast the inputs to floats floats = [float(x) for x in floats] floats = torch.tensor(floats).to(device) floats = floats.clamp(self.min_val, self.max_val) normalized_floats = (floats - self.min_val) / (self.max_val - self.min_val) # Cast floats to same type as embedder embedder_dtype = next(self.embedder.parameters()).dtype normalized_floats = normalized_floats.to(embedder_dtype) float_embeds = self.embedder(normalized_floats).unsqueeze(1) return [float_embeds, torch.ones(float_embeds.shape[0], 1).to(device)] class CLAPTextConditioner(Conditioner): def __init__(self, output_dim: int, clap_ckpt_path, use_text_features = False, feature_layer_ix: int = -1, audio_model_type="HTSAT-base", enable_fusion=True, project_out: bool = False, finetune: bool = False): super().__init__(768 if use_text_features else 512, output_dim, project_out=project_out) self.use_text_features = use_text_features self.feature_layer_ix = feature_layer_ix self.finetune = finetune # Suppress logging from transformers previous_level = logging.root.manager.disable logging.disable(logging.ERROR) with warnings.catch_warnings(): warnings.simplefilter("ignore") try: import laion_clap from laion_clap.clap_module.factory import load_state_dict as clap_load_state_dict model = laion_clap.CLAP_Module(enable_fusion=enable_fusion, amodel=audio_model_type, device='cpu') if self.finetune: self.model = model else: self.__dict__["model"] = model state_dict = clap_load_state_dict(clap_ckpt_path) self.model.model.load_state_dict(state_dict, strict=False) if self.finetune: self.model.model.text_branch.requires_grad_(True) self.model.model.text_branch.train() else: self.model.model.text_branch.requires_grad_(False) self.model.model.text_branch.eval() finally: logging.disable(previous_level) del self.model.model.audio_branch gc.collect() torch.cuda.empty_cache() def get_clap_features(self, prompts, layer_ix=-2, device: tp.Any = "cuda"): prompt_tokens = self.model.tokenizer(prompts) attention_mask = prompt_tokens["attention_mask"].to(device=device, non_blocking=True) prompt_features = self.model.model.text_branch( input_ids=prompt_tokens["input_ids"].to(device=device, non_blocking=True), attention_mask=attention_mask, output_hidden_states=True )["hidden_states"][layer_ix] return prompt_features, attention_mask def forward(self, texts: tp.List[str], device: tp.Any = "cuda") -> tp.Any: self.model.to(device) if self.use_text_features: if len(texts) == 1: text_features, text_attention_mask = self.get_clap_features([texts[0], ""], layer_ix=self.feature_layer_ix, device=device) text_features = text_features[:1, ...] text_attention_mask = text_attention_mask[:1, ...] else: text_features, text_attention_mask = self.get_clap_features(texts, layer_ix=self.feature_layer_ix, device=device) return [self.proj_out(text_features), text_attention_mask] # Fix for CLAP bug when only one text is passed if len(texts) == 1: text_embedding = self.model.get_text_embedding([texts[0], ""], use_tensor=True)[:1, ...] else: text_embedding = self.model.get_text_embedding(texts, use_tensor=True) text_embedding = text_embedding.unsqueeze(1).to(device) return [self.proj_out(text_embedding), torch.ones(text_embedding.shape[0], 1).to(device)] class CLAPAudioConditioner(Conditioner): def __init__(self, output_dim: int, clap_ckpt_path, audio_model_type="HTSAT-base", enable_fusion=True, project_out: bool = False): super().__init__(512, output_dim, project_out=project_out) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Suppress logging from transformers previous_level = logging.root.manager.disable logging.disable(logging.ERROR) with warnings.catch_warnings(): warnings.simplefilter("ignore") try: import laion_clap from laion_clap.clap_module.factory import load_state_dict as clap_load_state_dict model = laion_clap.CLAP_Module(enable_fusion=enable_fusion, amodel=audio_model_type, device='cpu') if self.finetune: self.model = model else: self.__dict__["model"] = model state_dict = clap_load_state_dict(clap_ckpt_path) self.model.model.load_state_dict(state_dict, strict=False) if self.finetune: self.model.model.audio_branch.requires_grad_(True) self.model.model.audio_branch.train() else: self.model.model.audio_branch.requires_grad_(False) self.model.model.audio_branch.eval() finally: logging.disable(previous_level) del self.model.model.text_branch gc.collect() torch.cuda.empty_cache() def forward(self, audios: tp.Union[torch.Tensor, tp.List[torch.Tensor], tp.Tuple[torch.Tensor]] , device: tp.Any = "cuda") -> tp.Any: self.model.to(device) if isinstance(audios, list) or isinstance(audios, tuple): audios = torch.cat(audios, dim=0) # Convert to mono mono_audios = audios.mean(dim=1) with torch.cuda.amp.autocast(enabled=False): audio_embedding = self.model.get_audio_embedding_from_data(mono_audios.float(), use_tensor=True) audio_embedding = audio_embedding.unsqueeze(1).to(device) return [self.proj_out(audio_embedding), torch.ones(audio_embedding.shape[0], 1).to(device)] def disabled_train(self, mode=True): """Overwrite model.train with this function to make sure train/eval mode does not change anymore.""" return self # Define BertLayer for cross attention from .Qformer import BertConfig, BertLMHeadModel, BertAttention, BertIntermediate, BertOutput from transformers.modeling_utils import ( PreTrainedModel, apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer, ) class BertLayer(nn.Module): def __init__(self, config): super().__init__() self.config = config self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = BertAttention(config) self.crossattention = BertAttention( config, is_cross_attention=True ) self.has_cross_attention = True self.intermediate = BertIntermediate(config) self.output = BertOutput(config) self.intermediate_query = BertIntermediate(config) self.output_query = BertOutput(config) def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, query_length=0, ): # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions=output_attentions, ) outputs = ( outputs + cross_attention_outputs[1:-1] ) # add cross attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs outputs = outputs + (present_key_value,) return outputs class T5Conditioner(Conditioner): T5_MODELS = ["t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b", "google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large", "google/flan-t5-xl", "google/flan-t5-xxl"] T5_MODEL_DIMS = { "t5-small": 512, "t5-base": 768, "t5-large": 1024, "t5-3b": 1024, "t5-11b": 1024, "t5-xl": 2048, "t5-xxl": 4096, "google/flan-t5-small": 512, "google/flan-t5-base": 768, "google/flan-t5-large": 1024, "google/flan-t5-3b": 1024, "google/flan-t5-11b": 1024, "google/flan-t5-xl": 2048, "google/flan-t5-xxl": 4096, } def init_Qformer(cls, num_query_token, vision_width, freeze, cross_attention_freq=2): encoder_config = BertConfig.from_pretrained("bert-base-uncased") encoder_config.encoder_width = vision_width # insert cross-attention layer every other block encoder_config.add_cross_attention = True encoder_config.cross_attention_freq = cross_attention_freq encoder_config.query_length = num_query_token Qformer = BertLMHeadModel.from_pretrained( "bert-base-uncased", config=encoder_config ) qformer_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", truncation_side="right") qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"}) Qformer.resize_token_embeddings(len(qformer_tokenizer)) query_tokens = nn.Parameter( torch.zeros(1, num_query_token, encoder_config.hidden_size) ) query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range) # optional, if not loading weights Qformer.cls = None Qformer.bert.embeddings.word_embeddings = None Qformer.bert.embeddings.position_embeddings = None for layer in Qformer.bert.encoder.layer: layer.output = None layer.intermediate = None if freeze: for name, param in Qformer.named_parameters(): param.requires_grad = False Qformer = Qformer.eval() Qformer.train = disabled_train query_tokens.requires_grad = False print("freeze Qformer") return Qformer, query_tokens def __init__( self, output_dim: int, t5_model_name: str = "t5-base", max_length: str = 128, enable_grad: bool = False, project_out: bool = False ): assert t5_model_name in self.T5_MODELS, f"Unknown T5 model name: {t5_model_name}" super().__init__(self.T5_MODEL_DIMS[t5_model_name], output_dim, project_out=project_out) from transformers import T5EncoderModel, AutoTokenizer, AutoModel from peft import ( LoraConfig, get_peft_model, get_peft_model_state_dict, set_peft_model_state_dict, ) self.qformer_proj_norm = nn.LayerNorm(768) self.audio_proj_norm_qformer = nn.LayerNorm(768, elementwise_affine=False) # Cross attention layer for qformer and t5 bert_config = BertConfig.from_pretrained('bert-base-uncased') bert_config.encoder_width = 768 self.cross_attend = BertLayer(bert_config) # self.proj_out_cross = nn.Linear(1024,768) self.max_length = max_length self.enable_grad = enable_grad # Suppress logging from transformers previous_level = logging.root.manager.disable logging.disable(logging.ERROR) with warnings.catch_warnings(): warnings.simplefilter("ignore") try: # self.tokenizer = T5Tokenizer.from_pretrained(t5_model_name, model_max_length = max_length) # model = T5EncoderModel.from_pretrained(t5_model_name, max_length=max_length).train(enable_grad).requires_grad_(enable_grad) self.tokenizer = AutoTokenizer.from_pretrained(t5_model_name) ckpt = torch.load('/fs/nexus-projects/brain_project/try_t5.pt') model = T5EncoderModel.from_pretrained(t5_model_name).train(enable_grad).requires_grad_(enable_grad).to(torch.float16) model.load_state_dict(ckpt,strict=True) self.llm_model = AutoModel.from_pretrained( "meta-llama/Meta-Llama-3.1-8B", load_in_8bit=False, # torch_dtype=torch.float16, device_map="auto", ) self.llm_model_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B") self.num_new_tokens = 64 self.IGNORE_TOKEN_ID=-100 # 1. LLM has the special token "" for system message to generate image -> add_tokens "" -> 32000 self.llm_model_tokenizer.add_tokens([""], special_tokens=False) # 2. LLM contains 64 tokens to summarize image and text information for conversation system -> add_tokens "..." -> 32001~32064 new_token_list = [f"" for i in range(self.num_new_tokens)] self.llm_model_tokenizer.add_tokens(new_token_list, special_tokens=False) # 3. count new tokens and resize tokenizer self.num_new_tokens = self.num_new_tokens + 1 self.llm_model.resize_token_embeddings(len(self.llm_model_tokenizer)) self.llm_model_tokenizer.ad_start_token_id = self.llm_model_tokenizer.convert_tokens_to_ids("") # ------------------- # # build new lm head self.lm_head = nn.Linear(4096, len(self.llm_model_tokenizer), bias=False) # initialize a new variable to store vocab_size self.vocab_size = len(self.llm_model_tokenizer) # 4. Initialize the new embeddings with original embeddings input_embeddings = self.llm_model.model.embed_tokens.weight.data output_embeddings = self.llm_model.lm_head.weight.data self.original_LLM_word_embedding_0 = input_embeddings[0] self.original_LLM_language_model_head_0 = output_embeddings[0] # ------------- # input_embeddings_avg = input_embeddings[:-self.num_new_tokens].mean(dim=0, keepdim=True) output_embeddings_avg = output_embeddings[:-self.num_new_tokens].mean(dim=0, keepdim=True) # ------------- # input_embeddings[-self.num_new_tokens:] = input_embeddings_avg output_embeddings[-self.num_new_tokens:] = output_embeddings_avg # ------------- # self.llm_model.model.embed_tokens.weight.data = input_embeddings self.lm_head.weight.data = output_embeddings # 5. Initialize the Qformer self.Qformer, self.query_tokens = self.init_Qformer(32, 768, True) self.llm_to_qformer_projection = nn.Linear(4096,768) # Add lora modules to the model config = LoraConfig(r=8, lora_alpha=16, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none", task_type='CAUSAL_LM') self.llm_model = get_peft_model(self.llm_model, config) finally: logging.disable(previous_level) if self.enable_grad: self.model = model else: self.__dict__["model"] = model def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]: llm_input_ids = [] llm_input_attention_mask = [] llm_targets_list = [] qformer_input_attention_mask = [] for text in texts: # define a system prompt for the LLM llm_caption_system = "A chat between a curious user and an artificial intelligence assistant. The assistant can generate . " # construct the prompt for the LLM llm_caption_interim = "Please generate an audio for the following caption: " + text llm_caption_last = " Here is the audio for the given caption: [ad]" append_str = "" for i in range(self.num_new_tokens - 1): append_str += f" " llm_caption = llm_caption_last.replace(" [ad]", append_str) # add the system prompt to the LLM prompt llm_caption = llm_caption_system + llm_caption_interim + llm_caption_last # tokenize the prompt input_ids_max_len = 512 llm_caption_input_ids = self.llm_model_tokenizer( llm_caption, return_tensors="pt", padding="max_length", max_length=input_ids_max_len, truncation=True, ).input_ids[0] # generate LLM targets llm_targets = llm_caption_input_ids.clone() llm_targets[:1] = self.IGNORE_TOKEN_ID total_padding_len = int(llm_targets.ne(self.llm_model_tokenizer.pad_token_id).sum()) instruction_len = len( self.llm_model_tokenizer( llm_caption_system + llm_caption_interim, max_length=input_ids_max_len, truncation=True, ).input_ids) - 2 llm_targets[1:(1 + instruction_len)] = self.IGNORE_TOKEN_ID llm_targets[total_padding_len:] = self.IGNORE_TOKEN_ID # append all llm_input_ids.append(llm_caption_input_ids) llm_input_attention_mask.append(llm_caption_input_ids.ne(self.llm_model_tokenizer.pad_token_id)) llm_targets_list.append(llm_targets) qformer_input_attention_mask.append(llm_caption_input_ids.ge(self.llm_model_tokenizer.ad_start_token_id)) llm_input_ids = torch.stack([torch.tensor(input_id) for input_id in llm_input_ids]).to(device) llm_input_attention_mask = torch.stack([torch.tensor(attention_mask) for attention_mask in llm_input_attention_mask]).to(device) llm_targets = torch.stack([torch.tensor(llm_target) for llm_target in llm_targets_list]).to(device) qformer_input_attention_mask = torch.stack([torch.tensor(qformer_attention_mask) for qformer_attention_mask in qformer_input_attention_mask]).to(device) # LLM Model llm_outputs = self.llm_model.model( input_ids=llm_input_ids, attention_mask=llm_input_attention_mask, position_ids=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=False, ) hidden_states_llm = llm_outputs[0] shift_labels = llm_targets[..., 1:].contiguous() # 5. Next token prediction language model loss: Enable model parallelism hidden_states = hidden_states_llm.to(torch.float32) logits = self.lm_head(hidden_states) shift_logits = logits[..., :-1, :].contiguous() # Flatten the tokens ce_loss_fct = nn.CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.vocab_size) shift_labels = shift_labels.view(-1) shift_labels = shift_labels.to(shift_logits.device) LM_loss = ce_loss_fct(shift_logits, shift_labels) * 1.0 #self.config.llm_loss_weight # for qformer hidden_states_llm = self.llm_to_qformer_projection(hidden_states_llm[:, :512, :]) # cut it to 512 max audio_input_for_qformer = self.qformer_proj_norm(hidden_states_llm) # audio_atts = torch.ones(audio_input_for_qformer.size()[:-1], dtype=torch.long).to(device) # can and should we convert the attention to pay attention only to the non padded tokens query_tokens = self.query_tokens.expand(audio_input_for_qformer.shape[0], -1, -1) query_output = self.Qformer.bert( query_embeds=query_tokens, encoder_hidden_states=audio_input_for_qformer, encoder_attention_mask=qformer_input_attention_mask, return_dict=True, ) query_output = self.audio_proj_norm_qformer(query_output.last_hidden_state) # T5 model self.model.to(device) self.proj_out.to(device) # self.proj_out_cross.to(device) encoded = self.tokenizer( texts, truncation=True, max_length=self.max_length, padding="max_length", return_tensors="pt", ) input_ids = encoded["input_ids"].to(device) attention_mask = encoded["attention_mask"].to(device).to(torch.bool) self.model.eval() with torch.cuda.amp.autocast(dtype=torch.float16) and torch.set_grad_enabled(self.enable_grad): embeddings = self.model( input_ids=input_ids, attention_mask=attention_mask )["last_hidden_state"] embeddings = self.proj_out(embeddings.float()) embeddings = embeddings * attention_mask.unsqueeze(-1).float() # -----------------# # cross attention between qformer and t5 qformer_attns = torch.ones(query_output.size()[:-1], dtype=torch.long).to(device) qformer_attns = self.get_bert_extended_attention_mask(qformer_attns, query_output.size()[:-1], device, False) embeddings = self.cross_attend(query_output,attention_mask=qformer_attns,encoder_hidden_states=embeddings,encoder_attention_mask=attention_mask) return embeddings, attention_mask, LM_loss class PhonemeConditioner(Conditioner): """ A conditioner that turns text into phonemes and embeds them using a lookup table Only works for English text Args: output_dim: the dimension of the output embeddings max_length: the maximum number of phonemes to embed project_out: whether to add another linear projection to the output embeddings """ def __init__( self, output_dim: int, max_length: int = 1024, project_out: bool = False, ): super().__init__(output_dim, output_dim, project_out=project_out) from g2p_en import G2p self.max_length = max_length self.g2p = G2p() # Reserving 0 for padding, 1 for ignored self.phoneme_embedder = nn.Embedding(len(self.g2p.phonemes) + 2, output_dim) def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]: self.phoneme_embedder.to(device) self.proj_out.to(device) batch_phonemes = [self.g2p(text) for text in texts] # shape [batch_size, length] phoneme_ignore = [" ", *string.punctuation] # Remove ignored phonemes and cut to max length batch_phonemes = [[p if p not in phoneme_ignore else "_" for p in phonemes] for phonemes in batch_phonemes] # Convert to ids phoneme_ids = [[self.g2p.p2idx[p] + 2 if p in self.g2p.p2idx else 1 for p in phonemes] for phonemes in batch_phonemes] #Pad to match longest and make a mask tensor for the padding longest = max([len(ids) for ids in phoneme_ids]) phoneme_ids = [ids + [0] * (longest - len(ids)) for ids in phoneme_ids] phoneme_ids = torch.tensor(phoneme_ids).to(device) # Convert to embeddings phoneme_embeds = self.phoneme_embedder(phoneme_ids) phoneme_embeds = self.proj_out(phoneme_embeds) return phoneme_embeds, torch.ones(phoneme_embeds.shape[0], phoneme_embeds.shape[1]).to(device) class TokenizerLUTConditioner(Conditioner): """ A conditioner that embeds text using a lookup table on a pretrained tokenizer's vocabulary Args: tokenizer_name: the name of the tokenizer from the Hugging Face transformers library output_dim: the dimension of the output embeddings max_length: the maximum length of the text to embed project_out: whether to add another linear projection to the output embeddings """ def __init__( self, tokenizer_name: str, # Name of a tokenizer from the Hugging Face transformers library output_dim: int, max_length: int = 1024, project_out: bool = False, ): super().__init__(output_dim, output_dim, project_out=project_out) from transformers import AutoTokenizer # Suppress logging from transformers previous_level = logging.root.manager.disable logging.disable(logging.ERROR) with warnings.catch_warnings(): warnings.simplefilter("ignore") try: self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) finally: logging.disable(previous_level) self.max_length = max_length self.token_embedder = nn.Embedding(len(self.tokenizer), output_dim) def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]: self.proj_out.to(device) encoded = self.tokenizer( texts, truncation=True, max_length=self.max_length, padding="max_length", return_tensors="pt", ) input_ids = encoded["input_ids"].to(device) attention_mask = encoded["attention_mask"].to(device).to(torch.bool) embeddings = self.token_embedder(input_ids) embeddings = self.proj_out(embeddings) embeddings = embeddings * attention_mask.unsqueeze(-1).float() return embeddings, attention_mask class PretransformConditioner(Conditioner): """ A conditioner that uses a pretransform's encoder for conditioning Args: pretransform: an instantiated pretransform to use for conditioning output_dim: the dimension of the output embeddings """ def __init__(self, pretransform: Pretransform, output_dim: int): super().__init__(pretransform.encoded_channels, output_dim) self.pretransform = pretransform def forward(self, audio: tp.Union[torch.Tensor, tp.List[torch.Tensor], tp.Tuple[torch.Tensor]], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]: self.pretransform.to(device) self.proj_out.to(device) if isinstance(audio, list) or isinstance(audio, tuple): audio = torch.cat(audio, dim=0) # Convert audio to pretransform input channels audio = set_audio_channels(audio, self.pretransform.io_channels) latents = self.pretransform.encode(audio) latents = self.proj_out(latents) return [latents, torch.ones(latents.shape[0], latents.shape[2]).to(latents.device)] class MultiConditioner(nn.Module): """ A module that applies multiple conditioners to an input dictionary based on the keys Args: conditioners: a dictionary of conditioners with keys corresponding to the keys of the conditioning input dictionary (e.g. "prompt") default_keys: a dictionary of default keys to use if the key is not in the input dictionary (e.g. {"prompt_t5": "prompt"}) """ def __init__(self, conditioners: tp.Dict[str, Conditioner], default_keys: tp.Dict[str, str] = {}): super().__init__() self.conditioners = nn.ModuleDict(conditioners) self.default_keys = default_keys def forward(self, batch_metadata: tp.List[tp.Dict[str, tp.Any]], device: tp.Union[torch.device, str]) -> tp.Dict[str, tp.Any]: output = {} for key, conditioner in self.conditioners.items(): condition_key = key conditioner_inputs = [] for x in batch_metadata: if condition_key not in x: if condition_key in self.default_keys: condition_key = self.default_keys[condition_key] else: raise ValueError(f"Conditioner key {condition_key} not found in batch metadata") #Unwrap the condition info if it's a single-element list or tuple, this is to support collation functions that wrap everything in a list if isinstance(x[condition_key], list) or isinstance(x[condition_key], tuple) and len(x[condition_key]) == 1: conditioner_input = x[condition_key][0] else: conditioner_input = x[condition_key] # if isinstance(conditioner_input, dict): # if len(conditioner_inputs) == 0: # conditioner_inputs = {C:[] for C in conditioner_input} # for cond in conditioner_input: # conditioner_inputs[cond].append(conditioner_input[cond]) # else: conditioner_inputs.append(conditioner_input) output[key] = conditioner(conditioner_inputs, device) return output def create_multi_conditioner_from_conditioning_config(config: tp.Dict[str, tp.Any]) -> MultiConditioner: """ Create a MultiConditioner from a conditioning config dictionary Args: config: the conditioning config dictionary device: the device to put the conditioners on """ conditioners = {} cond_dim = config["cond_dim"] default_keys = config.get("default_keys", {}) for conditioner_info in config["configs"]: id = conditioner_info["id"] conditioner_type = conditioner_info["type"] conditioner_config = {"output_dim": cond_dim} conditioner_config.update(conditioner_info["config"]) if conditioner_type == "t5": conditioners[id] = T5Conditioner(**conditioner_config) elif conditioner_type == "clap_text": conditioners[id] = CLAPTextConditioner(**conditioner_config) elif conditioner_type == "clap_audio": conditioners[id] = CLAPAudioConditioner(**conditioner_config) elif conditioner_type == "int": conditioners[id] = IntConditioner(**conditioner_config) elif conditioner_type == "number": conditioners[id] = NumberConditioner(**conditioner_config) elif conditioner_type == "phoneme": conditioners[id] = PhonemeConditioner(**conditioner_config) elif conditioner_type == "lut": conditioners[id] = TokenizerLUTConditioner(**conditioner_config) elif conditioner_type == "pretransform": sample_rate = conditioner_config.pop("sample_rate", None) assert sample_rate is not None, "Sample rate must be specified for pretransform conditioners" pretransform = create_pretransform_from_config(conditioner_config.pop("pretransform_config"), sample_rate=sample_rate) if conditioner_config.get("pretransform_ckpt_path", None) is not None: pretransform.load_state_dict(load_ckpt_state_dict(conditioner_config.pop("pretransform_ckpt_path"))) conditioners[id] = PretransformConditioner(pretransform, **conditioner_config) else: raise ValueError(f"Unknown conditioner type: {conditioner_type}") return MultiConditioner(conditioners, default_keys=default_keys)