File size: 35,285 Bytes
9172422
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
#Heavily influenced by https://github.com/facebookresearch/audiocraft/blob/main/audiocraft/modules/conditioners.py

import torch
import logging, warnings
import string
import typing as tp
import gc

from .adp import NumberEmbedder
from ..inference.utils import set_audio_channels
from .factory import create_pretransform_from_config
from .pretransforms import Pretransform
from ..training.utils import copy_state_dict
from .utils import load_ckpt_state_dict

from torch import nn

from .Qformer import BertConfig, BertLMHeadModel, BertAttention, BertIntermediate, BertOutput
from transformers import BertTokenizer

class Conditioner(nn.Module):
    def __init__(
            self,
            dim: int,
            output_dim: int,
            project_out: bool = False
            ):
        
        super().__init__()

        self.dim = dim
        self.output_dim = output_dim
        self.proj_out = nn.Linear(dim, output_dim) if (dim != output_dim or project_out) else nn.Identity()

    def forward(self, x: tp.Any) -> tp.Any:
        raise NotImplementedError()
    
class IntConditioner(Conditioner):
    def __init__(self, 
                output_dim: int,
                min_val: int=0,
                max_val: int=512
                ):
        super().__init__(output_dim, output_dim)

        self.min_val = min_val
        self.max_val = max_val
        self.int_embedder = nn.Embedding(max_val - min_val + 1, output_dim).requires_grad_(True)

    def forward(self, ints: tp.List[int], device=None) -> tp.Any:
            
            #self.int_embedder.to(device)
    
            ints = torch.tensor(ints).to(device)
            ints = ints.clamp(self.min_val, self.max_val)
    
            int_embeds = self.int_embedder(ints).unsqueeze(1)
    
            return [int_embeds, torch.ones(int_embeds.shape[0], 1).to(device)]

class NumberConditioner(Conditioner):
    '''
        Conditioner that takes a list of floats, normalizes them for a given range, and returns a list of embeddings
    '''
    def __init__(self, 
                output_dim: int,
                min_val: float=0,
                max_val: float=1
                ):
        super().__init__(output_dim, output_dim)

        self.min_val = min_val
        self.max_val = max_val

        self.embedder = NumberEmbedder(features=output_dim)

    def forward(self, floats: tp.List[float], device=None) -> tp.Any:
    
            # Cast the inputs to floats
            floats = [float(x) for x in floats]

            floats = torch.tensor(floats).to(device)

            floats = floats.clamp(self.min_val, self.max_val)
    
            normalized_floats = (floats - self.min_val) / (self.max_val - self.min_val)

            # Cast floats to same type as embedder
            embedder_dtype = next(self.embedder.parameters()).dtype
            normalized_floats = normalized_floats.to(embedder_dtype)

            float_embeds = self.embedder(normalized_floats).unsqueeze(1)
    
            return [float_embeds, torch.ones(float_embeds.shape[0], 1).to(device)]

class CLAPTextConditioner(Conditioner):
    def __init__(self, 
                 output_dim: int, 
                 clap_ckpt_path,
                 use_text_features = False,
                 feature_layer_ix: int = -1,
                 audio_model_type="HTSAT-base", 
                 enable_fusion=True,
                 project_out: bool = False,
                 finetune: bool = False):
        super().__init__(768 if use_text_features else 512, output_dim, project_out=project_out)

        self.use_text_features = use_text_features
        self.feature_layer_ix = feature_layer_ix
        self.finetune = finetune

        # Suppress logging from transformers
        previous_level = logging.root.manager.disable
        logging.disable(logging.ERROR)
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            try:
                import laion_clap
                from laion_clap.clap_module.factory import load_state_dict as clap_load_state_dict
                
                model = laion_clap.CLAP_Module(enable_fusion=enable_fusion, amodel=audio_model_type, device='cpu')

                if self.finetune:
                    self.model = model
                else: 
                    self.__dict__["model"] = model

                state_dict = clap_load_state_dict(clap_ckpt_path)
                self.model.model.load_state_dict(state_dict, strict=False)

                if self.finetune:
                    self.model.model.text_branch.requires_grad_(True)
                    self.model.model.text_branch.train()
                else:
                    self.model.model.text_branch.requires_grad_(False)
                    self.model.model.text_branch.eval()

            finally:
                logging.disable(previous_level)

        del self.model.model.audio_branch

        gc.collect()
        torch.cuda.empty_cache()

    def get_clap_features(self, prompts, layer_ix=-2, device: tp.Any = "cuda"):
        prompt_tokens = self.model.tokenizer(prompts)
        attention_mask = prompt_tokens["attention_mask"].to(device=device, non_blocking=True)
        prompt_features = self.model.model.text_branch(
            input_ids=prompt_tokens["input_ids"].to(device=device, non_blocking=True),
            attention_mask=attention_mask,
            output_hidden_states=True
        )["hidden_states"][layer_ix]

        return prompt_features, attention_mask

    def forward(self, texts: tp.List[str], device: tp.Any = "cuda") -> tp.Any:
        self.model.to(device)

        if self.use_text_features:
            if len(texts) == 1:
                text_features, text_attention_mask = self.get_clap_features([texts[0], ""], layer_ix=self.feature_layer_ix, device=device)
                text_features = text_features[:1, ...]
                text_attention_mask = text_attention_mask[:1, ...]
            else:
                text_features, text_attention_mask = self.get_clap_features(texts, layer_ix=self.feature_layer_ix, device=device)
            return [self.proj_out(text_features), text_attention_mask]

        # Fix for CLAP bug when only one text is passed
        if len(texts) == 1:
            text_embedding = self.model.get_text_embedding([texts[0], ""], use_tensor=True)[:1, ...]
        else:
            text_embedding = self.model.get_text_embedding(texts, use_tensor=True)

        text_embedding = text_embedding.unsqueeze(1).to(device)

        return [self.proj_out(text_embedding), torch.ones(text_embedding.shape[0], 1).to(device)]

class CLAPAudioConditioner(Conditioner):
    def __init__(self, 
                 output_dim: int, 
                 clap_ckpt_path,
                 audio_model_type="HTSAT-base", 
                 enable_fusion=True,
                 project_out: bool = False):
        super().__init__(512, output_dim, project_out=project_out)

        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

        # Suppress logging from transformers
        previous_level = logging.root.manager.disable
        logging.disable(logging.ERROR)
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            try:
                import laion_clap
                from laion_clap.clap_module.factory import load_state_dict as clap_load_state_dict
                
                model = laion_clap.CLAP_Module(enable_fusion=enable_fusion, amodel=audio_model_type, device='cpu')

                if self.finetune:
                    self.model = model
                else: 
                    self.__dict__["model"] = model

                state_dict = clap_load_state_dict(clap_ckpt_path)
                self.model.model.load_state_dict(state_dict, strict=False)

                if self.finetune:
                    self.model.model.audio_branch.requires_grad_(True)
                    self.model.model.audio_branch.train()
                else:
                    self.model.model.audio_branch.requires_grad_(False)
                    self.model.model.audio_branch.eval()

            finally:
                logging.disable(previous_level)

        del self.model.model.text_branch

        gc.collect()
        torch.cuda.empty_cache()

    def forward(self, audios: tp.Union[torch.Tensor, tp.List[torch.Tensor], tp.Tuple[torch.Tensor]] , device: tp.Any = "cuda") -> tp.Any:

        self.model.to(device)

        if isinstance(audios, list) or isinstance(audios, tuple):
            audios = torch.cat(audios, dim=0)

        # Convert to mono
        mono_audios = audios.mean(dim=1)

        with torch.cuda.amp.autocast(enabled=False):
            audio_embedding = self.model.get_audio_embedding_from_data(mono_audios.float(), use_tensor=True)

        audio_embedding = audio_embedding.unsqueeze(1).to(device)

        return [self.proj_out(audio_embedding), torch.ones(audio_embedding.shape[0], 1).to(device)]
    
def disabled_train(self, mode=True):
    """Overwrite model.train with this function to make sure train/eval mode
    does not change anymore."""
    
    return self

# Define BertLayer for cross attention

from .Qformer import BertConfig, BertLMHeadModel, BertAttention, BertIntermediate, BertOutput
from transformers.modeling_utils import (
    PreTrainedModel,
    apply_chunking_to_forward,
    find_pruneable_heads_and_indices,
    prune_linear_layer,
)

class BertLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = BertAttention(config)

        self.crossattention = BertAttention(
            config, is_cross_attention=True
        )
        self.has_cross_attention = True

        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

        self.intermediate_query = BertIntermediate(config)
        self.output_query = BertOutput(config)
    
    def feed_forward_chunk(self, attention_output):
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        past_key_value=None,
        output_attentions=False,
        query_length=0,
    ):
        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        self_attn_past_key_value = None

        self_attention_outputs = self.attention(
            hidden_states,
            attention_mask,
            head_mask,
            output_attentions=output_attentions,
            past_key_value=self_attn_past_key_value,
        )

        attention_output = self_attention_outputs[0]

        outputs = self_attention_outputs[1:-1]
        present_key_value = self_attention_outputs[-1]

        cross_attention_outputs = self.crossattention(
            attention_output,
            attention_mask,
            head_mask,
            encoder_hidden_states,
            encoder_attention_mask,
            output_attentions=output_attentions,
        )

        outputs = (
            outputs + cross_attention_outputs[1:-1]
        )  # add cross attentions if we output attention weights


        layer_output = apply_chunking_to_forward(
            self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
        )

        outputs = (layer_output,) + outputs

        outputs = outputs + (present_key_value,)

        return outputs


class T5Conditioner(Conditioner):

    T5_MODELS = ["t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b",
              "google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large",
              "google/flan-t5-xl", "google/flan-t5-xxl"]
    
    T5_MODEL_DIMS = {
        "t5-small": 512,
        "t5-base": 768,
        "t5-large": 1024,
        "t5-3b": 1024,
        "t5-11b": 1024,
        "t5-xl": 2048,
        "t5-xxl": 4096,
        "google/flan-t5-small": 512,
        "google/flan-t5-base": 768,
        "google/flan-t5-large": 1024,
        "google/flan-t5-3b": 1024,
        "google/flan-t5-11b": 1024,
        "google/flan-t5-xl": 2048,
        "google/flan-t5-xxl": 4096,
    }


    def init_Qformer(cls, num_query_token, vision_width, freeze, cross_attention_freq=2):

        encoder_config = BertConfig.from_pretrained("bert-base-uncased")
        encoder_config.encoder_width = vision_width
        # insert cross-attention layer every other block
        encoder_config.add_cross_attention = True
        encoder_config.cross_attention_freq = cross_attention_freq
        encoder_config.query_length = num_query_token
        Qformer = BertLMHeadModel.from_pretrained(
            "bert-base-uncased", config=encoder_config
        )

        qformer_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", truncation_side="right")
        qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"})
        Qformer.resize_token_embeddings(len(qformer_tokenizer))

        query_tokens = nn.Parameter(
            torch.zeros(1, num_query_token, encoder_config.hidden_size)
        )
        query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)

        # optional, if not loading weights
        Qformer.cls = None
        Qformer.bert.embeddings.word_embeddings = None
        Qformer.bert.embeddings.position_embeddings = None
        for layer in Qformer.bert.encoder.layer:
            layer.output = None
            layer.intermediate = None

        if freeze:
            for name, param in Qformer.named_parameters():
                param.requires_grad = False
            Qformer = Qformer.eval()
            Qformer.train = disabled_train
            query_tokens.requires_grad = False
            print("freeze Qformer")

        return Qformer, query_tokens

    def __init__(
            self,
            output_dim: int,
            t5_model_name: str = "t5-base",
            max_length: str = 128,
            enable_grad: bool = False,
            project_out: bool = False
    ):
        assert t5_model_name in self.T5_MODELS, f"Unknown T5 model name: {t5_model_name}"
        super().__init__(self.T5_MODEL_DIMS[t5_model_name], output_dim, project_out=project_out)
        
        from transformers import T5EncoderModel, AutoTokenizer, AutoModel

        from peft import (
            LoraConfig,
            get_peft_model,
            get_peft_model_state_dict,
            set_peft_model_state_dict,
        )

        self.qformer_proj_norm = nn.LayerNorm(768)
        self.audio_proj_norm_qformer = nn.LayerNorm(768, elementwise_affine=False)
        # Cross attention layer for qformer and t5
        bert_config = BertConfig.from_pretrained('bert-base-uncased')
        bert_config.encoder_width = 768
        self.cross_attend = BertLayer(bert_config)
        # self.proj_out_cross = nn.Linear(1024,768)

        self.max_length = max_length
        self.enable_grad = enable_grad

        # Suppress logging from transformers
        previous_level = logging.root.manager.disable
        logging.disable(logging.ERROR)
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            try:
                # self.tokenizer = T5Tokenizer.from_pretrained(t5_model_name, model_max_length = max_length)
                # model = T5EncoderModel.from_pretrained(t5_model_name, max_length=max_length).train(enable_grad).requires_grad_(enable_grad)
                self.tokenizer = AutoTokenizer.from_pretrained(t5_model_name)
                ckpt = torch.load('/fs/nexus-projects/brain_project/try_t5.pt')
                model = T5EncoderModel.from_pretrained(t5_model_name).train(enable_grad).requires_grad_(enable_grad).to(torch.float16)
                model.load_state_dict(ckpt,strict=True)

                self.llm_model = AutoModel.from_pretrained(
                    "meta-llama/Meta-Llama-3.1-8B",
                    load_in_8bit=False,
                    # torch_dtype=torch.float16,
                    device_map="auto",
                )

                self.llm_model_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B")
                self.num_new_tokens = 64
                self.IGNORE_TOKEN_ID=-100

                # 1. LLM has the special token "<ad>" for system message to generate image -> add_tokens "<img>" -> 32000
                self.llm_model_tokenizer.add_tokens(["<ad>"], special_tokens=False)

                # 2. LLM contains 64 tokens to summarize image and text information for conversation system -> add_tokens "<img_0>...<img_63>" -> 32001~32064
                new_token_list = [f"<ad_{i}>" for i in range(self.num_new_tokens)]
                self.llm_model_tokenizer.add_tokens(new_token_list, special_tokens=False)

                # 3. count new tokens and resize tokenizer
                self.num_new_tokens = self.num_new_tokens + 1
                self.llm_model.resize_token_embeddings(len(self.llm_model_tokenizer))
                self.llm_model_tokenizer.ad_start_token_id = self.llm_model_tokenizer.convert_tokens_to_ids("<ad_0>")
                # ------------------- #
                # build new lm head
                self.lm_head = nn.Linear(4096, len(self.llm_model_tokenizer), bias=False)
                # initialize a new variable to store vocab_size
                self.vocab_size = len(self.llm_model_tokenizer)

                # 4. Initialize the new embeddings with original embeddings
                input_embeddings = self.llm_model.model.embed_tokens.weight.data
                output_embeddings = self.llm_model.lm_head.weight.data
                self.original_LLM_word_embedding_0 = input_embeddings[0]
                self.original_LLM_language_model_head_0 = output_embeddings[0]
                # ------------- #
                input_embeddings_avg = input_embeddings[:-self.num_new_tokens].mean(dim=0, keepdim=True)
                output_embeddings_avg = output_embeddings[:-self.num_new_tokens].mean(dim=0, keepdim=True)
                # ------------- #
                input_embeddings[-self.num_new_tokens:] = input_embeddings_avg
                output_embeddings[-self.num_new_tokens:] = output_embeddings_avg
                # ------------- #
                self.llm_model.model.embed_tokens.weight.data = input_embeddings
                self.lm_head.weight.data = output_embeddings

                # 5. Initialize the Qformer
                self.Qformer, self.query_tokens = self.init_Qformer(32, 768, True)
                self.llm_to_qformer_projection = nn.Linear(4096,768)

                # Add lora modules to the model
                config = LoraConfig(r=8, lora_alpha=16, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none", task_type='CAUSAL_LM')
                self.llm_model = get_peft_model(self.llm_model, config)

            finally:
                logging.disable(previous_level)
   
        if self.enable_grad:
            self.model = model
        else: 
            self.__dict__["model"] = model


    def forward(self, texts: tp.List[str],  device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:

        llm_input_ids = []
        llm_input_attention_mask = []
        llm_targets_list = []
        qformer_input_attention_mask = []

        for text in texts:
            # define a system prompt for the LLM
            llm_caption_system = "A chat between a curious user and an artificial intelligence assistant. The assistant can generate <ad>. "

            # construct the prompt for the LLM
            llm_caption_interim = "Please generate an audio for the following caption: " + text
            llm_caption_last = " Here is the audio for the given caption: [ad]"

            append_str = ""
            for i in range(self.num_new_tokens - 1):
                append_str += f" <ad_{i}>"
            llm_caption = llm_caption_last.replace(" [ad]", append_str)

            # add the system prompt to the LLM prompt
            llm_caption = llm_caption_system + llm_caption_interim + llm_caption_last

            # tokenize the prompt

            input_ids_max_len = 512
            llm_caption_input_ids = self.llm_model_tokenizer(
                llm_caption,
                return_tensors="pt",
                padding="max_length",
                max_length=input_ids_max_len,
                truncation=True,
            ).input_ids[0]

            # generate LLM targets
            llm_targets = llm_caption_input_ids.clone()
            llm_targets[:1] = self.IGNORE_TOKEN_ID
            total_padding_len = int(llm_targets.ne(self.llm_model_tokenizer.pad_token_id).sum())

            instruction_len = len(
                self.llm_model_tokenizer(
                    llm_caption_system + llm_caption_interim,
                    max_length=input_ids_max_len,
                    truncation=True,
                ).input_ids) - 2

            llm_targets[1:(1 + instruction_len)] = self.IGNORE_TOKEN_ID
            llm_targets[total_padding_len:] = self.IGNORE_TOKEN_ID

            # append all
            llm_input_ids.append(llm_caption_input_ids)
            llm_input_attention_mask.append(llm_caption_input_ids.ne(self.llm_model_tokenizer.pad_token_id))
            llm_targets_list.append(llm_targets)
            qformer_input_attention_mask.append(llm_caption_input_ids.ge(self.llm_model_tokenizer.ad_start_token_id))


        llm_input_ids = torch.stack([torch.tensor(input_id) for input_id in llm_input_ids]).to(device)
        llm_input_attention_mask = torch.stack([torch.tensor(attention_mask) for attention_mask in llm_input_attention_mask]).to(device)
        llm_targets = torch.stack([torch.tensor(llm_target) for llm_target in llm_targets_list]).to(device)
        qformer_input_attention_mask = torch.stack([torch.tensor(qformer_attention_mask) for qformer_attention_mask in qformer_input_attention_mask]).to(device)

        # LLM Model
        llm_outputs = self.llm_model.model(
            input_ids=llm_input_ids,
            attention_mask=llm_input_attention_mask,
            position_ids=None,
            past_key_values=None,
            use_cache=None,
            output_attentions=False,
            output_hidden_states=False,
            return_dict=False,
        )

        hidden_states_llm = llm_outputs[0]
        shift_labels = llm_targets[..., 1:].contiguous()

        # 5. Next token prediction language model loss: Enable model parallelism
        hidden_states = hidden_states_llm.to(torch.float32)
        logits = self.lm_head(hidden_states)
        shift_logits = logits[..., :-1, :].contiguous()
        # Flatten the tokens
        ce_loss_fct = nn.CrossEntropyLoss()
        shift_logits = shift_logits.view(-1, self.vocab_size)
        shift_labels = shift_labels.view(-1)
        shift_labels = shift_labels.to(shift_logits.device)
        LM_loss = ce_loss_fct(shift_logits, shift_labels) * 1.0 #self.config.llm_loss_weight

        # for qformer
        hidden_states_llm = self.llm_to_qformer_projection(hidden_states_llm[:, :512, :]) # cut it to 512 max
        audio_input_for_qformer = self.qformer_proj_norm(hidden_states_llm)
        # audio_atts = torch.ones(audio_input_for_qformer.size()[:-1], dtype=torch.long).to(device) # can and should we convert the attention to pay attention only to the non padded tokens
        query_tokens = self.query_tokens.expand(audio_input_for_qformer.shape[0], -1, -1)
        query_output = self.Qformer.bert(
            query_embeds=query_tokens,
            encoder_hidden_states=audio_input_for_qformer,
            encoder_attention_mask=qformer_input_attention_mask,
            return_dict=True,
        )
        query_output = self.audio_proj_norm_qformer(query_output.last_hidden_state)

        # T5 model

        self.model.to(device)
        self.proj_out.to(device)
        # self.proj_out_cross.to(device)

        encoded = self.tokenizer(
            texts,
            truncation=True,
            max_length=self.max_length,
            padding="max_length",
            return_tensors="pt",
        )

        input_ids = encoded["input_ids"].to(device)
        attention_mask = encoded["attention_mask"].to(device).to(torch.bool)

        self.model.eval()
            
        with torch.cuda.amp.autocast(dtype=torch.float16) and torch.set_grad_enabled(self.enable_grad):
            embeddings = self.model(
                input_ids=input_ids, attention_mask=attention_mask
            )["last_hidden_state"]
            
        embeddings = self.proj_out(embeddings.float())

        embeddings = embeddings * attention_mask.unsqueeze(-1).float()

        # -----------------#

        # cross attention between qformer and t5
        qformer_attns = torch.ones(query_output.size()[:-1], dtype=torch.long).to(device)
        qformer_attns = self.get_bert_extended_attention_mask(qformer_attns, query_output.size()[:-1], device, False)

        embeddings = self.cross_attend(query_output,attention_mask=qformer_attns,encoder_hidden_states=embeddings,encoder_attention_mask=attention_mask)

        return embeddings, attention_mask, LM_loss
    
class PhonemeConditioner(Conditioner):
    """
    A conditioner that turns text into phonemes and embeds them using a lookup table
    Only works for English text

    Args:
        output_dim: the dimension of the output embeddings
        max_length: the maximum number of phonemes to embed
        project_out: whether to add another linear projection to the output embeddings
    """

    def __init__(
            self,
            output_dim: int,
            max_length: int = 1024,
            project_out: bool = False,
    ):
        super().__init__(output_dim, output_dim, project_out=project_out)
        
        from g2p_en import G2p

        self.max_length = max_length

        self.g2p = G2p()

        # Reserving 0 for padding, 1 for ignored
        self.phoneme_embedder = nn.Embedding(len(self.g2p.phonemes) + 2, output_dim)

    def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
        
        self.phoneme_embedder.to(device)
        self.proj_out.to(device)

        batch_phonemes = [self.g2p(text) for text in texts] # shape [batch_size, length]
        
        phoneme_ignore = [" ", *string.punctuation]

        # Remove ignored phonemes and cut to max length
        batch_phonemes = [[p if p not in phoneme_ignore else "_" for p in phonemes] for phonemes in batch_phonemes]

        # Convert to ids
        phoneme_ids = [[self.g2p.p2idx[p] + 2 if p in self.g2p.p2idx else 1 for p in phonemes] for phonemes in batch_phonemes]

        #Pad to match longest and make a mask tensor for the padding
        longest = max([len(ids) for ids in phoneme_ids])
        phoneme_ids = [ids + [0] * (longest - len(ids)) for ids in phoneme_ids]
        
        phoneme_ids = torch.tensor(phoneme_ids).to(device)

        # Convert to embeddings
        phoneme_embeds = self.phoneme_embedder(phoneme_ids)
        
        phoneme_embeds = self.proj_out(phoneme_embeds)

        return phoneme_embeds, torch.ones(phoneme_embeds.shape[0], phoneme_embeds.shape[1]).to(device)
  
class TokenizerLUTConditioner(Conditioner):
    """
    A conditioner that embeds text using a lookup table on a pretrained tokenizer's vocabulary

    Args:
        tokenizer_name: the name of the tokenizer from the Hugging Face transformers library
        output_dim: the dimension of the output embeddings
        max_length: the maximum length of the text to embed
        project_out: whether to add another linear projection to the output embeddings
    """

    def __init__(
            self,
            tokenizer_name: str, # Name of a tokenizer from the Hugging Face transformers library
            output_dim: int,
            max_length: int = 1024,
            project_out: bool = False,
    ):
        super().__init__(output_dim, output_dim, project_out=project_out)
        
        from transformers import AutoTokenizer

         # Suppress logging from transformers
        previous_level = logging.root.manager.disable
        logging.disable(logging.ERROR)
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            try:
                self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
            finally:
                logging.disable(previous_level)

        self.max_length = max_length

        self.token_embedder = nn.Embedding(len(self.tokenizer), output_dim)

    def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
        self.proj_out.to(device)

        encoded = self.tokenizer(
            texts,
            truncation=True,
            max_length=self.max_length,
            padding="max_length",
            return_tensors="pt",
        )

        input_ids = encoded["input_ids"].to(device)
        attention_mask = encoded["attention_mask"].to(device).to(torch.bool)
    
        embeddings = self.token_embedder(input_ids)
            
        embeddings = self.proj_out(embeddings)

        embeddings = embeddings * attention_mask.unsqueeze(-1).float()

        return embeddings, attention_mask

class PretransformConditioner(Conditioner):
    """
    A conditioner that uses a pretransform's encoder for conditioning

    Args:
        pretransform: an instantiated pretransform to use for conditioning
        output_dim: the dimension of the output embeddings
    """
    def __init__(self, pretransform: Pretransform, output_dim: int):
        super().__init__(pretransform.encoded_channels, output_dim)

        self.pretransform = pretransform

    def forward(self, audio: tp.Union[torch.Tensor, tp.List[torch.Tensor], tp.Tuple[torch.Tensor]], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:

        self.pretransform.to(device)
        self.proj_out.to(device)

        if isinstance(audio, list) or isinstance(audio, tuple):
            audio = torch.cat(audio, dim=0)

        # Convert audio to pretransform input channels
        audio = set_audio_channels(audio, self.pretransform.io_channels)
        
        latents = self.pretransform.encode(audio)

        latents = self.proj_out(latents)

        return [latents, torch.ones(latents.shape[0], latents.shape[2]).to(latents.device)]

class MultiConditioner(nn.Module):
    """
    A module that applies multiple conditioners to an input dictionary based on the keys

    Args:
        conditioners: a dictionary of conditioners with keys corresponding to the keys of the conditioning input dictionary (e.g. "prompt")
        default_keys: a dictionary of default keys to use if the key is not in the input dictionary (e.g. {"prompt_t5": "prompt"})
    """
    def __init__(self, conditioners: tp.Dict[str, Conditioner], default_keys: tp.Dict[str, str] = {}):
        super().__init__()

        self.conditioners = nn.ModuleDict(conditioners)
        self.default_keys = default_keys

    def forward(self, batch_metadata: tp.List[tp.Dict[str, tp.Any]], device: tp.Union[torch.device, str]) -> tp.Dict[str, tp.Any]:
        output = {}

        for key, conditioner in self.conditioners.items():
            condition_key = key

            conditioner_inputs = []

            for x in batch_metadata:

                if condition_key not in x:
                    if condition_key in self.default_keys:
                        condition_key = self.default_keys[condition_key]
                    else:
                        raise ValueError(f"Conditioner key {condition_key} not found in batch metadata")

                #Unwrap the condition info if it's a single-element list or tuple, this is to support collation functions that wrap everything in a list
                if isinstance(x[condition_key], list) or isinstance(x[condition_key], tuple) and len(x[condition_key]) == 1:
                    conditioner_input = x[condition_key][0]
                    
                else:
                    conditioner_input = x[condition_key]
                
                # if isinstance(conditioner_input, dict):
                #     if len(conditioner_inputs) == 0:
                #         conditioner_inputs = {C:[] for C in conditioner_input}
                #     for cond in conditioner_input:
                #         conditioner_inputs[cond].append(conditioner_input[cond])
                # else:
                conditioner_inputs.append(conditioner_input)
            
            output[key] = conditioner(conditioner_inputs, device)

        return output
    
def create_multi_conditioner_from_conditioning_config(config: tp.Dict[str, tp.Any]) -> MultiConditioner:
    """
    Create a MultiConditioner from a conditioning config dictionary

    Args:
        config: the conditioning config dictionary
        device: the device to put the conditioners on
    """
    conditioners = {}
    cond_dim = config["cond_dim"]
    
    default_keys = config.get("default_keys", {})

    for conditioner_info in config["configs"]:
        id = conditioner_info["id"]

        conditioner_type = conditioner_info["type"]

        conditioner_config = {"output_dim": cond_dim}
        
        conditioner_config.update(conditioner_info["config"])

        if conditioner_type == "t5":
            conditioners[id] = T5Conditioner(**conditioner_config)
        elif conditioner_type == "clap_text":
            conditioners[id] = CLAPTextConditioner(**conditioner_config)
        elif conditioner_type == "clap_audio":
            conditioners[id] = CLAPAudioConditioner(**conditioner_config)
        elif conditioner_type == "int":
            conditioners[id] = IntConditioner(**conditioner_config)
        elif conditioner_type == "number":
            conditioners[id] = NumberConditioner(**conditioner_config)
        elif conditioner_type == "phoneme":
            conditioners[id] = PhonemeConditioner(**conditioner_config)
        elif conditioner_type == "lut":
            conditioners[id] = TokenizerLUTConditioner(**conditioner_config)
        elif conditioner_type == "pretransform":
            sample_rate = conditioner_config.pop("sample_rate", None)
            assert sample_rate is not None, "Sample rate must be specified for pretransform conditioners"

            pretransform = create_pretransform_from_config(conditioner_config.pop("pretransform_config"), sample_rate=sample_rate)

            if conditioner_config.get("pretransform_ckpt_path", None) is not None:
                pretransform.load_state_dict(load_ckpt_state_dict(conditioner_config.pop("pretransform_ckpt_path")))

            conditioners[id] = PretransformConditioner(pretransform, **conditioner_config)
        else:
            raise ValueError(f"Unknown conditioner type: {conditioner_type}")

    return MultiConditioner(conditioners, default_keys=default_keys)