Spaces:
Runtime error
Runtime error
File size: 30,490 Bytes
0a1a1bb c2672bc 0a1a1bb 4ebf2b8 21b4828 0a1a1bb 8ffabbf 0a1a1bb 6181b5d 213ba13 0a1a1bb c2672bc 0a1a1bb 8ffabbf 0a1a1bb 8ffabbf 4fea5a9 0a1a1bb 4fea5a9 0a1a1bb 4fea5a9 8ffabbf 4fea5a9 0a1a1bb 6181b5d 0a1a1bb c2672bc 0a1a1bb c2672bc 0a1a1bb fae03ad 0a1a1bb fae03ad 0a1a1bb fae03ad 0a1a1bb fae03ad 0a1a1bb 4ebf2b8 21b4828 4ebf2b8 15a0540 21b4828 4ebf2b8 15a0540 4ebf2b8 21b4828 15a0540 21b4828 4ebf2b8 0a1a1bb c2672bc 0a1a1bb c2672bc 0a1a1bb c2672bc 0a1a1bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 |
import os
import faiss
import torch
import pandas as pd
from sentence_transformers import SentenceTransformer
from flask import Flask, request, jsonify, render_template
from flask_cors import CORS
from pyngrok import ngrok
import requests
import cloudinary
import cloudinary.uploader
import cloudinary.api
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
from peft import PeftModel, PeftConfig
import speech_recognition as sr
from pydub import AudioSegment
from happytransformer import HappyTextToText, TTSettings
import io
import logging
import geocoder
from geopy.distance import geodesic
import webrtcvad
import collections
import time
from werkzeug.utils import secure_filename
from geopy.geocoders import Nominatim
import pickle
import numpy as np
import tempfile
from pathlib import Path
# Update the numpy version check
if not hasattr(np, '__version__') or tuple(map(int, np.__version__.split('.'))) != (1, 23, 5):
print(f"Warning: Using numpy version {np.__version__}. Expected version 1.23.5")
# Configure logging
logging.basicConfig(level=logging.INFO)
# Load environment variables
API_KEY = os.getenv("AIzaSyC5FSchUVhKWetUIYPMe92B_1oRqhGplqI")
CSE_ID = os.getenv("c03c5384c2c5d424b")
CLOUDINARY_CLOUD_NAME = os.getenv("dn4rackei")
CLOUDINARY_API_KEY = os.getenv("599266248716888")
CLOUDINARY_API_SECRET = os.getenv("DRAaasqskCvfAhJhcKB6AKxrD7U")
# Define paths
load_dir = "./models/new_rag_model/"
model_path = os.path.join(load_dir, "model_state_dict.pth")
faiss_index_path = os.path.join(load_dir, "property_faiss.index")
dataset_path = os.path.join(load_dir, "property_data.csv")
model_dir = "./models/llm_model"
# model_dir = "/content/drive/MyDrive/newllmmodel/final_model"
# model_dir = "/content/drive/MyDrive/real_estate_model/final_model"
# model_dir = "/content/drive/MyDrive/rag"
# Check device
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Configure cache directories
os.environ['TRANSFORMERS_CACHE'] = '/cache'
os.environ['HF_HOME'] = '/cache'
os.environ['XDG_CACHE_HOME'] = '/cache'
# Load SentenceTransformer model
def load_sentence_transformer():
print("Loading SentenceTransformer model...")
try:
# Create cache directory if it doesn't exist
cache_dir = Path('/cache')
cache_dir.mkdir(parents=True, exist_ok=True)
# Import einops here to ensure it's available
try:
import einops
except ImportError:
raise ImportError("einops is required. Please install it with 'pip install einops'")
model_embedding = SentenceTransformer(
"jinaai/jina-embeddings-v3",
trust_remote_code=True,
cache_folder=str(cache_dir)
).to(device)
if os.path.exists(model_path):
state_dict = torch.load(model_path, map_location=device)
# Handle tensor types
for key, tensor in state_dict.items():
if hasattr(tensor, 'dequantize'):
state_dict[key] = tensor.dequantize().to(dtype=torch.float32)
elif tensor.dtype == torch.bfloat16:
state_dict[key] = tensor.to(dtype=torch.float32)
model_embedding.load_state_dict(state_dict)
print("SentenceTransformer model loaded successfully.")
else:
print(f"Warning: Model file not found at {model_path}")
return model_embedding
except Exception as e:
print(f"Error loading model: {str(e)}")
raise
# Load FAISS index
def load_faiss_index():
print("Loading FAISS index...")
try:
index = faiss.read_index(faiss_index_path)
# Ensure the index is on CPU
if hasattr(faiss, 'StandardGpuResources'):
index = faiss.index_gpu_to_cpu(index)
print("FAISS index loaded successfully.")
return index
except Exception as e:
print(f"Error loading FAISS index: {str(e)}")
raise
# Load dataset
def load_dataset():
print("Loading dataset...")
df = pd.read_csv(dataset_path)
print("Dataset loaded successfully.")
return df
# Custom Retriever Class
class CustomRagRetriever:
def __init__(self, faiss_index, model):
self.index = faiss_index
self.model = model
self.pca = None
# Load PCA if it exists
pca_path = os.path.join(os.path.dirname(model_path), "pca_model.pkl")
if os.path.exists(pca_path):
try:
with open(pca_path, 'rb') as f:
self.pca = pickle.load(f)
except ModuleNotFoundError:
print("Warning: Could not load PCA model due to numpy version mismatch. Continuing without PCA.")
self.pca = None
except Exception as e:
print(f"Warning: Error loading PCA model: {str(e)}. Continuing without PCA.")
self.pca = None
def retrieve(self, query, top_k=10):
print(f"Retrieving properties for query: {query}")
try:
# Get query embedding with optimizations
with torch.no_grad():
query_embedding = self.model.encode(
[query],
convert_to_numpy=True,
device=device,
normalize_embeddings=True
)
# Convert to FP32
query_embedding = query_embedding.astype(np.float32)
# Only apply PCA if it was successfully loaded
if self.pca is not None:
try:
query_embedding = self.pca.transform(query_embedding)
except Exception as e:
print(f"Warning: Error applying PCA transformation: {str(e)}")
distances, indices = self.index.search(query_embedding, top_k)
retrieved_properties = []
for idx, dist in zip(indices[0], distances[0]):
property_data = df.iloc[idx]
retrieved_properties.append({
"property": property_data,
"image_url": property_data["property_image"],
"distance": float(dist)
})
print(f"Retrieved {len(retrieved_properties)} properties")
return retrieved_properties
except Exception as e:
print(f"Error in retrieve: {str(e)}")
raise
# Initialize components
df = load_dataset()
model_embedding = load_sentence_transformer()
index = load_faiss_index()
retriever = CustomRagRetriever(index, model_embedding)
# Load tokenizer and LLM model
def load_tokenizer_and_model():
print("Loading tokenizer...")
try:
# Load base model first
base_model_name = "unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit"
tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True)
print("Tokenizer loaded successfully.")
print("Loading LLM model...")
# Load the base model with 4-bit quantization
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
trust_remote_code=True,
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
device_map="auto"
)
# Load the PEFT adapter
model_llm = PeftModel.from_pretrained(
base_model,
model_dir,
device_map="auto",
is_trainable=False
)
print("LLM model loaded successfully.")
return tokenizer, model_llm
except Exception as e:
print(f"Error loading model: {str(e)}")
raise
tokenizer, model_llm = load_tokenizer_and_model()
# Configure Cloudinary
def configure_cloudinary():
print("Configuring Cloudinary...")
cloudinary.config(
cloud_name=CLOUDINARY_CLOUD_NAME,
api_key=CLOUDINARY_API_KEY,
api_secret=CLOUDINARY_API_SECRET
)
print("Cloudinary configured successfully.")
configure_cloudinary()
# Search real estate properties
def search_real_estate(query, retriever, top_k=10, raw_results=False):
print(f"Searching real estate properties for query: {query}")
search_results = retriever.retrieve(query, top_k)
if raw_results:
return search_results
formatted_results = []
for result in search_results:
property_info = result['property']
formatted_result = {
"Property Name": property_info.get('PropertyName', 'N/A'),
"Address": property_info.get('Address', 'N/A'),
"ZipCode": int(float(property_info.get('ZipCode', 0))),
"LeasableSquareFeet": int(float(property_info.get('LeasableSquareFeet', 0))),
"YearBuilt": int(float(property_info.get('YearBuilt', 0))),
"NumberOfRooms": int(float(property_info.get('NumberOfRooms', 0))),
"ParkingSpaces": int(float(property_info.get('ParkingSpaces', 0))),
"PropertyManager": property_info.get('PropertyManager', 'N/A'),
"MarketValue": float(property_info.get('MarketValue', 0)),
"TaxAssessmentNumber": property_info.get('TaxAssessmentNumber', 'N/A'),
"Latitude": float(property_info.get('Latitude', 0)),
"Longitude": float(property_info.get('Longitude', 0)),
"CreateDate": property_info.get('CreateDate', 'N/A'),
"LastModifiedDate": property_info.get('LastModifiedDate', 'N/A'),
"City": property_info.get('City', 'N/A'),
"State": property_info.get('State', 'N/A'),
"Country": property_info.get('Country', 'N/A'),
"PropertyType": property_info.get('PropertyType', 'N/A'),
"PropertyStatus": property_info.get('PropertyStatus', 'N/A'),
"Description": property_info.get('Description', 'N/A'),
"ViewNumber": int(float(property_info.get('ViewNumber', 0))),
"Contact": int(float(property_info.get('Contact', 0))),
"TotalSquareFeet": int(float(property_info.get('TotalSquareFeet', 0))),
"IsDeleted": bool(property_info.get('IsDeleted', False)),
"Beds": int(float(property_info.get('Beds', 0))),
"Baths": int(float(property_info.get('Baths', 0))),
"AgentName": property_info.get('AgentName', 'N/A'),
"AgentPhoneNumber": property_info.get('AgentPhoneNumber', 'N/A'),
"AgentEmail": property_info.get('AgentEmail', 'N/A'),
"KeyFeatures": property_info.get('KeyFeatures', 'N/A'),
"NearbyAmenities": property_info.get('NearbyAmenities', 'N/A'),
"Property Image": result['image_url'],
"Distance": result['distance']
}
formatted_results.append(formatted_result)
print(f"Found {len(formatted_results)} matching properties")
return formatted_results
# Generate response with optimized parameters
def generate_response(query, max_new_tokens=100, temperature=0.7, top_k=30, top_p=0.8, repetition_penalty=1.05):
print(f"\nGenerating response for query: {query}\n")
# Print parameter settings
print("Generation Parameters:")
print(f"- Max New Tokens: {max_new_tokens}")
print(f"- Temperature: {temperature}")
print(f"- Top-K Sampling: {top_k}")
print(f"- Top-P Sampling: {top_p}")
print(f"- Repetition Penalty: {repetition_penalty}")
print(f"- Sampling Enabled: True (do_sample=True)\n")
input_text = f"User: {query}\nAssistant:"
inputs = tokenizer(input_text, return_tensors="pt").to(device)
start_time = time.time() # Record start time
try:
outputs = model_llm.generate(
inputs.input_ids,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response.replace(input_text, "").strip()
end_time = time.time() # Record end time
duration = end_time - start_time # Calculate duration
print(f"\nGenerated Response:\n{response}\n")
print(f"Time taken to generate response: {duration:.2f} seconds\n")
return response, duration
except Exception as e:
logging.error(f"Error generating response: {e}")
return "An error occurred while generating the response.", None
# Combined model response with optimized parameters
def combined_model_response(query, retriever, top_k=5, max_new_tokens=512, temperature=0.5, top_k_sampling=30, repetition_penalty=1.0):
print(f"Generating combined model response for query: {query}")
retrieved_results = search_real_estate(query, retriever, top_k, raw_results=True)
if not retrieved_results:
return "No relevant properties found."
combined_property_details = []
for i, result in enumerate(retrieved_results, 1):
property_info = result['property']
property_details = (
f"Property {i}:\n"
f"Property Name: {property_info['PropertyName']}\n"
f"Address: {property_info['Address']}, {property_info['City']}, {property_info['State']}, {property_info['ZipCode']}, {property_info['Country']}\n"
f"Leasable Area: {property_info['LeasableSquareFeet']} sqft\n"
f"Year Built: {property_info['YearBuilt']}\n"
f"Beds: {property_info['Beds']} Baths: {property_info['Baths']}\n"
f"Parking Spaces: {property_info['ParkingSpaces']}\n"
f"Market Value: {property_info['MarketValue']}\n"
# f"Tax Assessment Number: {property_info['TaxAssessmentNumber']}\n"
# f"Coordinates: {property_info['Latitude']}, {property_info['Longitude']}\n"
f"Property Type: {property_info['PropertyType']}\n"
f"Property Status: {property_info['PropertyStatus']}\n"
f"Description: {property_info['Description']}\n"
# f"View Count: {property_info['ViewNumber']}\n"
f"Contact: {property_info['Contact']}\n"
f"Total Square Feet: {property_info['TotalSquareFeet']} sqft\n"
# f"Deleted: {'Yes' if property_info['IsDeleted'] else 'No'}\n"
f"Agent Name: {property_info['AgentName']}\n"
f"Agent Phone Number: {property_info['AgentPhoneNumber']}\n"
f"Agent Email: {property_info['AgentEmail']}\n"
f"Key Features: {property_info['KeyFeatures']}\n"
f"Nearby Amenities: {property_info['NearbyAmenities']}\n"
f"Created Date: {property_info['CreateDate']}\n"
f"Last Modified Date: {property_info['LastModifiedDate']}\n"
)
combined_property_details.append(property_details)
prompt = f"User Query: {query}\nProperty Details:\n" + "\n".join(combined_property_details) + "\nGenerate a concise response based on the user's query and retrieved property details."
print(f"User Query: {query}")
response, duration = generate_response(prompt, max_new_tokens=max_new_tokens)
print(f"Combined model response: {response}")
print(f"Time taken to generate combined model response: {duration:.2f} seconds\n")
return response, duration
# VAD Audio Class
class VADAudio:
def __init__(self, aggressiveness=3):
self.vad = webrtcvad.Vad(aggressiveness)
self.sample_rate = 16000
self.frame_duration_ms = 30
def frame_generator(self, audio, frame_duration_ms, sample_rate):
n = int(sample_rate * (frame_duration_ms / 1000.0))
offset = 0
while offset + n < len(audio):
yield audio[offset:offset + n]
offset += n
def vad_collector(self, audio, sample_rate, frame_duration_ms, padding_duration_ms=300, aggressiveness=3):
vad = webrtcvad.Vad(aggressiveness)
num_padding_frames = int(padding_duration_ms / frame_duration_ms)
ring_buffer = collections.deque(maxlen=num_padding_frames)
triggered = False
for frame in self.frame_generator(audio, frame_duration_ms, sample_rate):
is_speech = vad.is_speech(frame, sample_rate)
if not triggered:
ring_buffer.append((frame, is_speech))
num_voiced = len([f for f, speech in ring_buffer if speech])
if num_voiced > 0.9 * ring_buffer.maxlen:
triggered = True
for f, s in ring_buffer:
yield f
ring_buffer.clear()
else:
yield frame
ring_buffer.append((frame, is_speech))
num_unvoiced = len([f for f, speech in ring_buffer if not speech])
if num_unvoiced > 0.9 * ring_buffer.maxlen:
triggered = False
yield b''.join([f for f in ring_buffer])
ring_buffer.clear()
# Transcribe with VAD
def transcribe_with_vad(audio_file):
vad_audio = VADAudio()
audio = AudioSegment.from_file(audio_file)
audio = audio.set_frame_rate(vad_audio.sample_rate).set_channels(1)
raw_audio = audio.raw_data
frames = vad_audio.vad_collector(raw_audio, vad_audio.sample_rate, vad_audio.frame_duration_ms)
for frame in frames:
if len(frame) > 0:
recognizer = sr.Recognizer()
audio_data = sr.AudioData(frame, vad_audio.sample_rate, audio.sample_width)
try:
text = recognizer.recognize_google(audio_data)
print(f"Transcription: {text}")
return text
except sr.UnknownValueError:
print("Google Speech Recognition could not understand the audio")
except sr.RequestError as e:
print(f"Could not request results from Google Speech Recognition service; {e}")
return ""
# Flask app
app = Flask(__name__, template_folder="sample_data/templates")
conversation_context = {}
# Configure CORS
CORS(app, resources={
r"/*": {
"origins": ["http://localhost:4200", "https://localhost:4200"],
"methods": ["GET", "POST", "OPTIONS"],
"allow_headers": ["Content-Type", "X-Session-ID"]
}
})
@app.before_request
def handle_preflight():
if request.method == 'OPTIONS':
response = app.make_default_options_response()
response.headers.add('Access-Control-Allow-Headers', 'Content-Type, X-Session-ID')
response.headers.add('Access-Control-Allow-Methods', 'GET, POST, OPTIONS')
return response
@app.route('/')
def index():
print("Rendering index page")
return render_template('index.html')
@app.route('/search', methods=['POST'])
def search():
try:
data = request.json
query = data.get('query')
session_id = data.get('session_id')
continue_conversation = data.get('continue', False)
if not query:
return jsonify({"error": "Query parameter is missing"}), 400
if session_id not in conversation_context or not continue_conversation:
search_results = retriever.retrieve(query)
formatted_results = []
for result in search_results:
property_info = result['property']
formatted_result = {
"Property Name": property_info.get('PropertyName', 'N/A'),
"Address": property_info.get('Address', 'N/A'),
"ZipCode": int(float(property_info.get('ZipCode', 0))),
"LeasableSquareFeet": int(float(property_info.get('LeasableSquareFeet', 0))),
"YearBuilt": int(float(property_info.get('YearBuilt', 0))),
"NumberOfRooms": int(float(property_info.get('NumberOfRooms', 0))),
"ParkingSpaces": int(float(property_info.get('ParkingSpaces', 0))),
"PropertyManager": property_info.get('PropertyManager', 'N/A'),
"MarketValue": float(property_info.get('MarketValue', 0)),
"TaxAssessmentNumber": property_info.get('TaxAssessmentNumber', 'N/A'),
"City": property_info.get('City', 'N/A'),
"State": property_info.get('State', 'N/A'),
"Country": property_info.get('Country', 'N/A'),
"PropertyType": property_info.get('PropertyType', 'N/A'),
"PropertyStatus": property_info.get('PropertyStatus', 'N/A'),
"Description": property_info.get('Description', 'N/A'),
"ViewNumber": int(float(property_info.get('ViewNumber', 0))),
"Contact": int(float(property_info.get('Contact', 0))),
"TotalSquareFeet": int(float(property_info.get('TotalSquareFeet', 0))),
"IsDeleted": bool(property_info.get('IsDeleted', False)),
"Beds": int(float(property_info.get('Beds', 0))),
"Baths": int(float(property_info.get('Baths', 0))),
"AgentName": property_info.get('AgentName', 'N/A'),
"AgentPhoneNumber": property_info.get('AgentPhoneNumber', 'N/A'),
"AgentEmail": property_info.get('AgentEmail', 'N/A'),
"KeyFeatures": property_info.get('KeyFeatures', 'N/A'),
"NearbyAmenities": property_info.get('NearbyAmenities', 'N/A'),
"Property Image": result['image_url'],
"Distance": float(result['distance'])
}
formatted_results.append(formatted_result)
conversation_context[session_id] = formatted_results
else:
formatted_results = conversation_context[session_id]
print(f"Returning {len(formatted_results)} search results")
return jsonify(formatted_results)
except Exception as e:
logging.error(f"Error in search endpoint: {str(e)}")
return jsonify({"error": f"An error occurred: {str(e)}"}), 500
@app.route('/transcribe', methods=['POST'])
def transcribe():
if 'audio' not in request.files:
return jsonify({"error": "No audio file provided"}), 400
audio_file = request.files['audio']
# Ensure the file has an allowed extension
allowed_extensions = {'wav', 'mp3', 'ogg', 'webm'}
if '.' not in audio_file.filename or \
audio_file.filename.rsplit('.', 1)[1].lower() not in allowed_extensions:
return jsonify({"error": "Invalid audio file format"}), 400
try:
# Save the uploaded file temporarily
temp_dir = os.path.join(os.getcwd(), 'temp')
os.makedirs(temp_dir, exist_ok=True)
temp_path = os.path.join(temp_dir, 'temp_audio.' + audio_file.filename.rsplit('.', 1)[1].lower())
audio_file.save(temp_path)
# Convert audio to proper format if needed
audio = AudioSegment.from_file(temp_path)
audio = audio.set_channels(1) # Convert to mono
audio = audio.set_frame_rate(16000) # Set sample rate to 16kHz
# Save as WAV for speech recognition
wav_path = os.path.join(temp_dir, 'temp_audio.wav')
audio.export(wav_path, format="wav")
# Perform speech recognition
recognizer = sr.Recognizer()
with sr.AudioFile(wav_path) as source:
audio_data = recognizer.record(source)
text = recognizer.recognize_google(audio_data)
# Clean up temporary files
os.remove(temp_path)
os.remove(wav_path)
# Grammar correction
happy_tt = HappyTextToText("T5", "vennify/t5-base-grammar-correction")
settings = TTSettings(do_sample=True, top_k=50, temperature=0.7)
corrected_text = happy_tt.generate_text(f"grammar: {text}", args=settings)
print(f"Original Transcription: {text}")
print(f"Corrected Transcription: {corrected_text.text}")
return jsonify({
"transcription": corrected_text.text,
"original": text
})
except sr.UnknownValueError:
return jsonify({"error": "Could not understand audio"}), 400
except sr.RequestError as e:
return jsonify({"error": f"Google Speech Recognition error: {str(e)}"}), 500
except Exception as e:
logging.error(f"Error processing audio: {str(e)}")
return jsonify({"error": f"Audio processing error: {str(e)}"}), 500
finally:
# Ensure temp files are cleaned up even if an error occurs
if 'temp_path' in locals() and os.path.exists(temp_path):
os.remove(temp_path)
if 'wav_path' in locals() and os.path.exists(wav_path):
os.remove(wav_path)
@app.route('/generate', methods=['POST'])
def generate():
data = request.json
query = data.get('query')
session_id = data.get('session_id')
continue_conversation = data.get('continue', False)
if not query:
return jsonify({"error": "Query parameter is missing"}), 400
if session_id in conversation_context and continue_conversation:
previous_results = conversation_context[session_id]
combined_query = f"Based on previous results:{previous_results}New Query: {query}"
response, duration = generate_response(combined_query)
else:
response, duration = generate_response(query)
conversation_context[session_id] = response
print(f"Generated response: {response}")
print(f"Time taken to generate response: {duration:.2f} seconds\n")
return jsonify({"response": response, "duration": duration})
@app.route('/recommend', methods=['POST'])
def recommend():
data = request.json
query = data.get('query')
session_id = data.get('session_id')
continue_conversation = data.get('continue', False)
if not query:
return jsonify({"error": "Query parameter is missing"}), 400
if query.lower() == 'hi':
return jsonify({"response": "Do you want to know the properties located near you? (yes/no):"})
if query.lower() == 'yes':
if session_id in conversation_context and 'location' in conversation_context[session_id]:
latitude, longitude = conversation_context[session_id]['location']
else:
return jsonify({"error": "Location not available. Please try again."}), 400
my_location = (latitude, longitude)
# Filter out rows with invalid coordinates before calculating distances
valid_properties = df[
df['Latitude'].apply(lambda x: isinstance(x, (int, float)) or (isinstance(x, str) and x.replace('.', '').isdigit())) &
df['Longitude'].apply(lambda x: isinstance(x, (int, float)) or (isinstance(x, str) and x.replace('.', '').isdigit()))
].copy()
# Convert coordinates to float
valid_properties['Latitude'] = valid_properties['Latitude'].astype(float)
valid_properties['Longitude'] = valid_properties['Longitude'].astype(float)
# Calculate distances for valid properties
valid_properties['Distance'] = valid_properties.apply(
lambda row: geodesic(my_location, (row['Latitude'], row['Longitude'])).miles,
axis=1
)
# Get 5 nearest properties
nearest_properties = valid_properties.nsmallest(5, 'Distance')
nearest_properties_list = nearest_properties[[
'PropertyName', 'Address', 'City', 'Distance',
'PropertyType', 'AgentPhoneNumber'
]].to_dict(orient='records')
if not nearest_properties_list:
return jsonify({"response": "No valid properties found near your location."})
return jsonify({
"response": "Here are the 5 nearest properties to your location:",
"properties": nearest_properties_list
})
if session_id in conversation_context and continue_conversation:
previous_results = conversation_context[session_id]
combined_query = f"Based on previous results:{previous_results}New Query: {query}"
response, duration = combined_model_response(combined_query, retriever)
else:
response, duration = combined_model_response(query, retriever)
conversation_context[session_id] = response
print(f"Recommended response: {response}")
print(f"Time taken to generate recommended response: {duration:.2f} seconds\n")
return jsonify({"response": response, "duration": duration})
@app.route('/set-location', methods=['POST'])
def set_location():
data = request.json
latitude = data.get('latitude')
longitude = data.get('longitude')
session_id = data.get('session_id')
if latitude is None or longitude is None:
return jsonify({"error": "Location parameters are missing"}), 400
try:
# Initialize the geolocator
geolocator = Nominatim(user_agent="hive_prop")
# Get location details from coordinates
location = geolocator.reverse(f"{latitude}, {longitude}", language='en')
if location and location.raw.get('address'):
address = location.raw['address']
city = address.get('city') or address.get('town') or address.get('suburb') or address.get('county')
state = address.get('state')
country = address.get('country')
# Store location data in conversation context
conversation_context[session_id] = {
'location': (latitude, longitude),
'city': city,
'state': state,
'country': country
}
return jsonify({
"message": "Location set successfully.",
"city": city,
"state": state,
"country": country
})
else:
return jsonify({"error": "Could not determine city from coordinates"}), 400
except Exception as e:
logging.error(f"Error getting location details: {str(e)}")
return jsonify({"error": f"Error processing location: {str(e)}"}), 500
if __name__ == '__main__':
# Remove ngrok configuration
# public_url = ngrok.connect(5000)
# print(f' * ngrok tunnel "http://127.0.0.1:5000" -> "{public_url}"')
# Update to use port 7860 (standard for Spaces)
app.run(host='0.0.0.0', port=7860)
|