Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -11,6 +11,7 @@ import cloudinary
|
|
11 |
import cloudinary.uploader
|
12 |
import cloudinary.api
|
13 |
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
|
|
14 |
import speech_recognition as sr
|
15 |
from pydub import AudioSegment
|
16 |
from happytransformer import HappyTextToText, TTSettings
|
@@ -188,18 +189,29 @@ retriever = CustomRagRetriever(index, model_embedding)
|
|
188 |
def load_tokenizer_and_model():
|
189 |
print("Loading tokenizer...")
|
190 |
try:
|
191 |
-
|
|
|
|
|
|
|
192 |
print("Tokenizer loaded successfully.")
|
193 |
|
194 |
print("Loading LLM model...")
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
config=model_config,
|
199 |
trust_remote_code=True,
|
200 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
201 |
device_map="auto"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
).to(device)
|
|
|
203 |
print("LLM model loaded successfully.")
|
204 |
return tokenizer, model_llm
|
205 |
except Exception as e:
|
|
|
11 |
import cloudinary.uploader
|
12 |
import cloudinary.api
|
13 |
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
14 |
+
from peft import PeftModel, PeftConfig
|
15 |
import speech_recognition as sr
|
16 |
from pydub import AudioSegment
|
17 |
from happytransformer import HappyTextToText, TTSettings
|
|
|
189 |
def load_tokenizer_and_model():
|
190 |
print("Loading tokenizer...")
|
191 |
try:
|
192 |
+
# Load base model first
|
193 |
+
base_model_name = "unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit"
|
194 |
+
|
195 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True)
|
196 |
print("Tokenizer loaded successfully.")
|
197 |
|
198 |
print("Loading LLM model...")
|
199 |
+
# Load the base model
|
200 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
201 |
+
base_model_name,
|
|
|
202 |
trust_remote_code=True,
|
203 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
204 |
device_map="auto"
|
205 |
+
)
|
206 |
+
|
207 |
+
# Load the PEFT adapter
|
208 |
+
model_llm = PeftModel.from_pretrained(
|
209 |
+
base_model,
|
210 |
+
model_dir,
|
211 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
212 |
+
device_map="auto"
|
213 |
).to(device)
|
214 |
+
|
215 |
print("LLM model loaded successfully.")
|
216 |
return tokenizer, model_llm
|
217 |
except Exception as e:
|