Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -28,9 +28,9 @@ import numpy as np
|
|
28 |
import tempfile
|
29 |
from pathlib import Path
|
30 |
|
31 |
-
#
|
32 |
-
if not hasattr(np, '__version__') or tuple(map(int, np.__version__.split('.')))
|
33 |
-
|
34 |
|
35 |
# Configure logging
|
36 |
logging.basicConfig(level=logging.INFO)
|
@@ -69,32 +69,34 @@ def load_sentence_transformer():
|
|
69 |
cache_dir = Path('/cache')
|
70 |
cache_dir.mkdir(parents=True, exist_ok=True)
|
71 |
|
72 |
-
#
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
else:
|
97 |
-
|
|
|
|
|
98 |
except Exception as e:
|
99 |
print(f"Error loading model: {str(e)}")
|
100 |
raise
|
|
|
28 |
import tempfile
|
29 |
from pathlib import Path
|
30 |
|
31 |
+
# Update the numpy version check at the top of the file
|
32 |
+
if not hasattr(np, '__version__') or tuple(map(int, np.__version__.split('.'))) > (1, 24, 0):
|
33 |
+
print(f"Warning: Using numpy version {np.__version__}. Some features may not work properly.")
|
34 |
|
35 |
# Configure logging
|
36 |
logging.basicConfig(level=logging.INFO)
|
|
|
69 |
cache_dir = Path('/cache')
|
70 |
cache_dir.mkdir(parents=True, exist_ok=True)
|
71 |
|
72 |
+
# Import einops here to ensure it's available
|
73 |
+
try:
|
74 |
+
import einops
|
75 |
+
except ImportError:
|
76 |
+
raise ImportError("einops is required. Please install it with 'pip install einops'")
|
77 |
+
|
78 |
+
model_embedding = SentenceTransformer(
|
79 |
+
"jinaai/jina-embeddings-v3",
|
80 |
+
trust_remote_code=True,
|
81 |
+
cache_folder=str(cache_dir)
|
82 |
+
).to(device)
|
83 |
+
|
84 |
+
if os.path.exists(model_path):
|
85 |
+
state_dict = torch.load(model_path, map_location=device)
|
86 |
+
|
87 |
+
# Handle tensor types
|
88 |
+
for key, tensor in state_dict.items():
|
89 |
+
if hasattr(tensor, 'dequantize'):
|
90 |
+
state_dict[key] = tensor.dequantize().to(dtype=torch.float32)
|
91 |
+
elif tensor.dtype == torch.bfloat16:
|
92 |
+
state_dict[key] = tensor.to(dtype=torch.float32)
|
93 |
+
|
94 |
+
model_embedding.load_state_dict(state_dict)
|
95 |
+
print("SentenceTransformer model loaded successfully.")
|
96 |
else:
|
97 |
+
print(f"Warning: Model file not found at {model_path}")
|
98 |
+
|
99 |
+
return model_embedding
|
100 |
except Exception as e:
|
101 |
print(f"Error loading model: {str(e)}")
|
102 |
raise
|