File size: 9,759 Bytes
96b98f3
 
91cbc46
e252d2c
43728f4
80a6e34
 
96b98f3
 
 
 
91cbc46
80a6e34
91cbc46
3992b65
91cbc46
3992b65
 
 
91cbc46
80a6e34
91cbc46
 
3992b65
80a6e34
 
91cbc46
80a6e34
3992b65
 
 
 
80a6e34
91cbc46
 
 
 
80a6e34
91cbc46
 
 
 
 
3992b65
 
 
 
91cbc46
 
 
 
 
 
 
 
 
 
 
 
 
 
80a6e34
 
3992b65
 
 
 
 
80a6e34
3992b65
80a6e34
 
 
 
 
3992b65
91cbc46
 
 
3992b65
91cbc46
 
 
 
 
 
3992b65
91cbc46
 
 
3992b65
80a6e34
 
 
91cbc46
3992b65
96b98f3
 
80a6e34
96b98f3
 
 
 
91cbc46
3992b65
43728f4
96b98f3
 
43728f4
3992b65
80a6e34
96b98f3
80a6e34
43728f4
80a6e34
 
 
e252d2c
 
 
80a6e34
e252d2c
 
80a6e34
 
 
 
3992b65
e252d2c
 
 
 
91cbc46
e252d2c
 
 
3992b65
91cbc46
 
 
 
 
 
80a6e34
91cbc46
80a6e34
3992b65
 
 
edfc8c7
3992b65
 
91cbc46
3992b65
e72fe9d
3992b65
 
 
e72fe9d
 
 
 
 
 
3992b65
e72fe9d
3992b65
 
e72fe9d
 
 
 
 
 
 
 
 
3992b65
 
 
 
 
 
 
e72fe9d
 
3992b65
91cbc46
 
80a6e34
 
91cbc46
80a6e34
3992b65
91cbc46
 
 
3992b65
edfc8c7
91cbc46
 
80a6e34
91cbc46
80a6e34
 
 
 
3992b65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80a6e34
 
91cbc46
80a6e34
 
 
91cbc46
80a6e34
 
 
91cbc46
80a6e34
edfc8c7
91cbc46
80a6e34
 
 
 
 
 
 
 
 
 
 
 
91cbc46
80a6e34
96b98f3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import gradio as gr
import numpy as np
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt

from datasets import load_dataset
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix

matplotlib.use('Agg')

################################################################################
# SUGGESTED_DATASETS: These must actually exist on huggingface.co/datasets
#
# "scikit-learn/iris" -> A small, classic Iris dataset with a "train" split
# "uci/wine"          -> Another small dataset with a "train" split
# "SKIP/ENTER_CUSTOM" -> Placeholder to let the user enter a custom dataset ID
################################################################################
SUGGESTED_DATASETS = [
    "scikit-learn/iris",
    "uci/wine",
    "SKIP/ENTER_CUSTOM"
]

def update_columns(dataset_id, custom_dataset_id):
    """
    After the user chooses a dataset from the dropdown or enters their own,
    this function loads the dataset's "train" split, converts it to a DataFrame,
    and returns the columns. These columns are used to populate the Label and
    Feature selectors in the UI.
    """
    if dataset_id != "SKIP/ENTER_CUSTOM":
        final_id = dataset_id
    else:
        final_id = custom_dataset_id.strip()

    try:
        ds = load_dataset(final_id, split="train")
        df = pd.DataFrame(ds)
        cols = df.columns.tolist()

        message = (
            f"**Loaded dataset**: `{final_id}`\n\n"
            f"**Columns found**: {cols}"
        )
        return (
            gr.update(choices=cols, value=None),   # label_col dropdown
            gr.update(choices=cols, value=[]),     # feature_cols checkbox group
            message
        )
    except Exception as e:
        err_msg = f"**Error loading** `{final_id}`: {e}"
        return (
            gr.update(choices=[], value=None),
            gr.update(choices=[], value=[]),
            err_msg
        )

def train_model(dataset_id, custom_dataset_id, label_column, feature_columns,
                learning_rate, n_estimators, max_depth, test_size):
    """
    1. Decide which dataset ID to load (from dropdown or custom).
    2. Load that dataset's 'train' split, turn into DataFrame, extract X (features) and y (label).
    3. Train a GradientBoostingClassifier on X_train, y_train.
    4. Compute accuracy and confusion matrix on X_test, y_test.
    5. Plot and return feature importances + confusion matrix heatmap + textual summary.
    """
    # Resolve final dataset ID
    if dataset_id != "SKIP/ENTER_CUSTOM":
        final_id = dataset_id
    else:
        final_id = custom_dataset_id.strip()

    # Load dataset -> df
    ds = load_dataset(final_id, split="train")
    df = pd.DataFrame(ds)

    # Validate columns
    if label_column not in df.columns:
        raise ValueError(f"Label column '{label_column}' not found in dataset columns.")
    for fc in feature_columns:
        if fc not in df.columns:
            raise ValueError(f"Feature column '{fc}' not found in dataset columns.")

    # Convert to NumPy arrays
    X = df[feature_columns].values
    y = df[label_column].values

    # Train/test split
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=test_size, random_state=42
    )

    # Instantiate and train GradientBoostingClassifier
    clf = GradientBoostingClassifier(
        learning_rate=learning_rate,
        n_estimators=int(n_estimators),
        max_depth=int(max_depth),
        random_state=42
    )
    clf.fit(X_train, y_train)

    # Evaluate
    y_pred = clf.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred)
    cm = confusion_matrix(y_test, y_pred)

    # Create Matplotlib figure with feature importances + confusion matrix
    fig, axs = plt.subplots(1, 2, figsize=(10, 4))

    # Subplot 1: Feature Importances
    importances = clf.feature_importances_
    axs[0].barh(range(len(feature_columns)), importances, color='skyblue')
    axs[0].set_yticks(range(len(feature_columns)))
    axs[0].set_yticklabels(feature_columns)
    axs[0].set_xlabel("Importance")
    axs[0].set_title("Feature Importances")

    # Subplot 2: Confusion Matrix Heatmap
    im = axs[1].imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
    axs[1].set_title("Confusion Matrix")
    plt.colorbar(im, ax=axs[1])
    axs[1].set_xlabel("Predicted")
    axs[1].set_ylabel("True")

    # Optionally annotate each cell with numeric counts
    thresh = cm.max() / 2.0
    for i in range(cm.shape[0]):
        for j in range(cm.shape[1]):
            color = "white" if cm[i, j] > thresh else "black"
            axs[1].text(j, i, str(cm[i, j]), ha="center", va="center", color=color)

    plt.tight_layout()

    # Textual summary
    text_summary = (
        f"**Dataset used**: `{final_id}`\n\n"
        f"**Label column**: `{label_column}`\n\n"
        f"**Feature columns**: `{feature_columns}`\n\n"
        f"**Accuracy**: {accuracy:.3f}\n\n"
    )

    return text_summary, fig

###############################################################################
# Gradio UI
###############################################################################
with gr.Blocks() as demo:

    # High-level title and description
    gr.Markdown(
        """
        # Introduction to Gradient Boosting

        This Space demonstrates how to train a [GradientBoostingClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html#gradientboostingclassifier) from **scikit-learn** on **tabular datasets** hosted on the [Hugging Face Hub](https://huggingface.co/datasets).

        Gradient Boosting is an ensemble machine learning technique that combines many weak learners (usually small decision trees) in an iterative, stage-wise fashion to create a stronger overall model. 
        In each step, the algorithm fits a new weak learner to the current errors of the combined ensemble, effectively allowing the model to focus on the hardest-to-predict data points. 
        By repeatedly adding these specialized trees, Gradient Boosting can capture complex patterns and deliver high predictive accuracy, especially on tabular data.

        **Put simply, Gradient Boosting makes a big deal out of small anomolies!**

        **Purpose**:
        - Easily explore hyperparameters (_learning_rate, n_estimators, max_depth_) and quickly train an ML model on real data.
        - Visualise model performance via confusion matrix heatmap and a feature importance plot.

        **Notes**:
        - The dataset must have a **"train"** split with tabular columns (i.e., no nested structures).
        - Large datasets may take time to download/train.
        - The confusion matrix helps you see how predictions compare to ground-truth labels. The diagonal cells show correct predictions; off-diagonal cells indicate misclassifications.
        - The feature importance plot shows which features the model relies on the most for its predictions.

        ---

        **Usage**:
        1. Select one of the suggested datasets from the dropdown _or_ enter any valid dataset from the [Hugging Face Hub](https://huggingface.co/datasets).
        2. Click **Load Columns** to retrieve the column names from the dataset's **train** split.
        3. Choose exactly _one_ **Label column** (the target) and one or more **Feature columns** (the inputs).
        4. Adjust hyperparameters (learning_rate, n_estimators, max_depth, test_size).
        5. Click **Train & Evaluate** to train a Gradient Boosting model and see its accuracy, feature importances, and confusion matrix.

        You are now a machine learning engineer, congratulations πŸ€— 
        
        ---
        """
    )

    with gr.Row():
        dataset_dropdown = gr.Dropdown(
            label="Choose suggested dataset",
            choices=SUGGESTED_DATASETS,
            value=SUGGESTED_DATASETS[0]
        )
        custom_dataset_id = gr.Textbox(
            label="Or enter a custom dataset ID",
            placeholder="e.g. user/my_custom_dataset"
        )

    load_cols_btn = gr.Button("Load Columns")
    load_cols_info = gr.Markdown()

    with gr.Row():
        label_col = gr.Dropdown(choices=[], label="Label column (choose 1)")
        feature_cols = gr.CheckboxGroup(choices=[], label="Feature columns (choose 1 or more)")

    # Model Hyperparameters
    learning_rate_slider = gr.Slider(
        minimum=0.01, maximum=1.0, value=0.1, step=0.01, 
        label="learning_rate"
    )
    n_estimators_slider = gr.Slider(
        minimum=50, maximum=300, value=100, step=50, 
        label="n_estimators"
    )
    max_depth_slider = gr.Slider(
        minimum=1, maximum=10, value=3, step=1, 
        label="max_depth"
    )
    test_size_slider = gr.Slider(
        minimum=0.1, maximum=0.9, value=0.3, step=0.1, 
        label="test_size fraction (0.1-0.9)"
    )

    train_button = gr.Button("Train & Evaluate")

    output_text = gr.Markdown()
    output_plot = gr.Plot()

    # Link the "Load Columns" button -> update_columns function
    load_cols_btn.click(
        fn=update_columns,
        inputs=[dataset_dropdown, custom_dataset_id],
        outputs=[label_col, feature_cols, load_cols_info],
    )

    # Link "Train & Evaluate" -> train_model function
    train_button.click(
        fn=train_model,
        inputs=[
            dataset_dropdown,
            custom_dataset_id,
            label_col,
            feature_cols,
            learning_rate_slider,
            n_estimators_slider,
            max_depth_slider,
            test_size_slider
        ],
        outputs=[output_text, output_plot],
    )

demo.launch()