ZennyKenny commited on
Commit
3992b65
Β·
verified Β·
1 Parent(s): 91cbc46

add docs + improve ux/ui

Browse files
Files changed (1) hide show
  1. app.py +77 -52
app.py CHANGED
@@ -1,5 +1,3 @@
1
- # app.py
2
-
3
  import gradio as gr
4
  import numpy as np
5
  import pandas as pd
@@ -11,49 +9,48 @@ from sklearn.ensemble import GradientBoostingClassifier
11
  from sklearn.model_selection import train_test_split
12
  from sklearn.metrics import accuracy_score, confusion_matrix
13
 
14
- # In some remote environments, Matplotlib needs to be set to 'Agg' backend
15
  matplotlib.use('Agg')
16
 
17
  ################################################################################
18
- # SUGGESTED_DATASETS: Must actually exist on huggingface.co/datasets.
19
  #
20
- # "scikit-learn/iris" -> a tabular Iris dataset with a "train" split of 150 rows.
21
- # "uci/wine" -> a tabular Wine dataset with a "train" split of 178 rows.
 
22
  ################################################################################
23
  SUGGESTED_DATASETS = [
24
  "scikit-learn/iris",
25
  "uci/wine",
26
- "SKIP/ENTER_CUSTOM" # a placeholder meaning "use custom_dataset_id"
27
  ]
28
 
29
-
30
  def update_columns(dataset_id, custom_dataset_id):
31
  """
32
- Loads the chosen dataset (train split) and returns its column names,
33
- to populate the Label Column & Feature Columns selectors.
 
 
34
  """
35
- # If user picked a suggested dataset (not SKIP), use that
36
  if dataset_id != "SKIP/ENTER_CUSTOM":
37
  final_id = dataset_id
38
  else:
39
- # Use the user-supplied dataset ID
40
  final_id = custom_dataset_id.strip()
41
 
42
  try:
43
- # Load just the "train" split; many HF datasets have train/test/validation
44
  ds = load_dataset(final_id, split="train")
45
  df = pd.DataFrame(ds)
46
  cols = df.columns.tolist()
47
 
48
- message = f"**Loaded dataset**: {final_id}\n\n**Columns found**: {cols}"
49
- # Return list of columns for both label & features
 
 
50
  return (
51
  gr.update(choices=cols, value=None), # label_col dropdown
52
  gr.update(choices=cols, value=[]), # feature_cols checkbox group
53
  message
54
  )
55
  except Exception as e:
56
- # If load fails or dataset doesn't exist
57
  err_msg = f"**Error loading** `{final_id}`: {e}"
58
  return (
59
  gr.update(choices=[], value=None),
@@ -61,43 +58,42 @@ def update_columns(dataset_id, custom_dataset_id):
61
  err_msg
62
  )
63
 
64
-
65
  def train_model(dataset_id, custom_dataset_id, label_column, feature_columns,
66
  learning_rate, n_estimators, max_depth, test_size):
67
  """
68
- 1. Determine the final dataset ID (from dropdown or custom text).
69
- 2. Load the dataset -> create dataframe -> X, y.
70
- 3. Train GradientBoostingClassifier.
71
- 4. Return metrics (accuracy) and a Matplotlib figure with:
72
- - Feature importance bar chart
73
- - Confusion matrix heatmap
74
  """
 
75
  if dataset_id != "SKIP/ENTER_CUSTOM":
76
  final_id = dataset_id
77
  else:
78
  final_id = custom_dataset_id.strip()
79
 
80
- # Load dataset
81
  ds = load_dataset(final_id, split="train")
82
  df = pd.DataFrame(ds)
83
 
84
- # Basic validation
85
  if label_column not in df.columns:
86
  raise ValueError(f"Label column '{label_column}' not found in dataset columns.")
87
  for fc in feature_columns:
88
  if fc not in df.columns:
89
  raise ValueError(f"Feature column '{fc}' not found in dataset columns.")
90
 
91
- # Build X, y arrays
92
  X = df[feature_columns].values
93
  y = df[label_column].values
94
 
95
- # Split
96
  X_train, X_test, y_train, y_test = train_test_split(
97
  X, y, test_size=test_size, random_state=42
98
  )
99
 
100
- # Train model
101
  clf = GradientBoostingClassifier(
102
  learning_rate=learning_rate,
103
  n_estimators=int(n_estimators),
@@ -106,14 +102,12 @@ def train_model(dataset_id, custom_dataset_id, label_column, feature_columns,
106
  )
107
  clf.fit(X_train, y_train)
108
 
109
- # Predictions & metrics
110
  y_pred = clf.predict(X_test)
111
  accuracy = accuracy_score(y_test, y_pred)
112
  cm = confusion_matrix(y_test, y_pred)
113
 
114
- # Build a single figure with 2 subplots:
115
- # 1) Feature importances
116
- # 2) Confusion matrix heatmap
117
  fig, axs = plt.subplots(1, 2, figsize=(10, 4))
118
 
119
  # Subplot 1: Feature Importances
@@ -131,7 +125,7 @@ def train_model(dataset_id, custom_dataset_id, label_column, feature_columns,
131
  axs[1].set_xlabel("Predicted")
132
  axs[1].set_ylabel("True")
133
 
134
- # Optionally annotate each cell with the count
135
  thresh = cm.max() / 2.0
136
  for i in range(cm.shape[0]):
137
  for j in range(cm.shape[1]):
@@ -140,7 +134,7 @@ def train_model(dataset_id, custom_dataset_id, label_column, feature_columns,
140
 
141
  plt.tight_layout()
142
 
143
- # Build textual summary
144
  text_summary = (
145
  f"**Dataset used**: `{final_id}`\n\n"
146
  f"**Label column**: `{label_column}`\n\n"
@@ -150,44 +144,75 @@ def train_model(dataset_id, custom_dataset_id, label_column, feature_columns,
150
 
151
  return text_summary, fig
152
 
153
-
154
- # Build the Gradio Blocks UI
 
155
  with gr.Blocks() as demo:
156
- gr.Markdown("# Train a GradientBoostingClassifier on any HF Dataset\n")
 
157
  gr.Markdown(
158
- "1. Choose a suggested dataset from the dropdown **or** enter a custom dataset ID in the format `user/dataset`.\n"
159
- "2. Click **Load Columns** to inspect the columns.\n"
160
- "3. Pick a **Label column** and **Feature columns**.\n"
161
- "4. Adjust hyperparameters and click **Train & Evaluate**.\n"
162
- "5. Observe accuracy, feature importances, and a confusion matrix heatmap.\n\n"
163
- "*(Note: the dataset must have a `train` split!)*"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164
  )
165
 
166
- # Row 1: Dataset selection
167
  with gr.Row():
168
  dataset_dropdown = gr.Dropdown(
169
  label="Choose suggested dataset",
170
  choices=SUGGESTED_DATASETS,
171
- value=SUGGESTED_DATASETS[0] # default
172
  )
173
  custom_dataset_id = gr.Textbox(
174
  label="Or enter a custom dataset ID",
175
- placeholder="e.g. username/my_custom_dataset"
176
  )
177
 
178
  load_cols_btn = gr.Button("Load Columns")
179
  load_cols_info = gr.Markdown()
180
 
181
- # Row 2: label & feature columns
182
  with gr.Row():
183
  label_col = gr.Dropdown(choices=[], label="Label column (choose 1)")
184
  feature_cols = gr.CheckboxGroup(choices=[], label="Feature columns (choose 1 or more)")
185
 
186
- # Hyperparameters
187
- learning_rate_slider = gr.Slider(0.01, 1.0, value=0.1, step=0.01, label="learning_rate")
188
- n_estimators_slider = gr.Slider(50, 300, value=100, step=50, label="n_estimators")
189
- max_depth_slider = gr.Slider(1, 10, value=3, step=1, label="max_depth")
190
- test_size_slider = gr.Slider(0.1, 0.9, value=0.3, step=0.1, label="test_size fraction (0.1-0.9)")
 
 
 
 
 
 
 
 
 
 
 
 
191
 
192
  train_button = gr.Button("Train & Evaluate")
193
 
 
 
 
1
  import gradio as gr
2
  import numpy as np
3
  import pandas as pd
 
9
  from sklearn.model_selection import train_test_split
10
  from sklearn.metrics import accuracy_score, confusion_matrix
11
 
 
12
  matplotlib.use('Agg')
13
 
14
  ################################################################################
15
+ # SUGGESTED_DATASETS: These must actually exist on huggingface.co/datasets
16
  #
17
+ # "scikit-learn/iris" -> A small, classic Iris dataset with a "train" split
18
+ # "uci/wine" -> Another small dataset with a "train" split
19
+ # "SKIP/ENTER_CUSTOM" -> Placeholder to let the user enter a custom dataset ID
20
  ################################################################################
21
  SUGGESTED_DATASETS = [
22
  "scikit-learn/iris",
23
  "uci/wine",
24
+ "SKIP/ENTER_CUSTOM"
25
  ]
26
 
 
27
  def update_columns(dataset_id, custom_dataset_id):
28
  """
29
+ After the user chooses a dataset from the dropdown or enters their own,
30
+ this function loads the dataset's "train" split, converts it to a DataFrame,
31
+ and returns the columns. These columns are used to populate the Label and
32
+ Feature selectors in the UI.
33
  """
 
34
  if dataset_id != "SKIP/ENTER_CUSTOM":
35
  final_id = dataset_id
36
  else:
 
37
  final_id = custom_dataset_id.strip()
38
 
39
  try:
 
40
  ds = load_dataset(final_id, split="train")
41
  df = pd.DataFrame(ds)
42
  cols = df.columns.tolist()
43
 
44
+ message = (
45
+ f"**Loaded dataset**: `{final_id}`\n\n"
46
+ f"**Columns found**: {cols}"
47
+ )
48
  return (
49
  gr.update(choices=cols, value=None), # label_col dropdown
50
  gr.update(choices=cols, value=[]), # feature_cols checkbox group
51
  message
52
  )
53
  except Exception as e:
 
54
  err_msg = f"**Error loading** `{final_id}`: {e}"
55
  return (
56
  gr.update(choices=[], value=None),
 
58
  err_msg
59
  )
60
 
 
61
  def train_model(dataset_id, custom_dataset_id, label_column, feature_columns,
62
  learning_rate, n_estimators, max_depth, test_size):
63
  """
64
+ 1. Decide which dataset ID to load (from dropdown or custom).
65
+ 2. Load that dataset's 'train' split, turn into DataFrame, extract X (features) and y (label).
66
+ 3. Train a GradientBoostingClassifier on X_train, y_train.
67
+ 4. Compute accuracy and confusion matrix on X_test, y_test.
68
+ 5. Plot and return feature importances + confusion matrix heatmap + textual summary.
 
69
  """
70
+ # Resolve final dataset ID
71
  if dataset_id != "SKIP/ENTER_CUSTOM":
72
  final_id = dataset_id
73
  else:
74
  final_id = custom_dataset_id.strip()
75
 
76
+ # Load dataset -> df
77
  ds = load_dataset(final_id, split="train")
78
  df = pd.DataFrame(ds)
79
 
80
+ # Validate columns
81
  if label_column not in df.columns:
82
  raise ValueError(f"Label column '{label_column}' not found in dataset columns.")
83
  for fc in feature_columns:
84
  if fc not in df.columns:
85
  raise ValueError(f"Feature column '{fc}' not found in dataset columns.")
86
 
87
+ # Convert to NumPy arrays
88
  X = df[feature_columns].values
89
  y = df[label_column].values
90
 
91
+ # Train/test split
92
  X_train, X_test, y_train, y_test = train_test_split(
93
  X, y, test_size=test_size, random_state=42
94
  )
95
 
96
+ # Instantiate and train GradientBoostingClassifier
97
  clf = GradientBoostingClassifier(
98
  learning_rate=learning_rate,
99
  n_estimators=int(n_estimators),
 
102
  )
103
  clf.fit(X_train, y_train)
104
 
105
+ # Evaluate
106
  y_pred = clf.predict(X_test)
107
  accuracy = accuracy_score(y_test, y_pred)
108
  cm = confusion_matrix(y_test, y_pred)
109
 
110
+ # Create Matplotlib figure with feature importances + confusion matrix
 
 
111
  fig, axs = plt.subplots(1, 2, figsize=(10, 4))
112
 
113
  # Subplot 1: Feature Importances
 
125
  axs[1].set_xlabel("Predicted")
126
  axs[1].set_ylabel("True")
127
 
128
+ # Optionally annotate each cell with numeric counts
129
  thresh = cm.max() / 2.0
130
  for i in range(cm.shape[0]):
131
  for j in range(cm.shape[1]):
 
134
 
135
  plt.tight_layout()
136
 
137
+ # Textual summary
138
  text_summary = (
139
  f"**Dataset used**: `{final_id}`\n\n"
140
  f"**Label column**: `{label_column}`\n\n"
 
144
 
145
  return text_summary, fig
146
 
147
+ ###############################################################################
148
+ # Gradio UI
149
+ ###############################################################################
150
  with gr.Blocks() as demo:
151
+
152
+ # High-level title and description
153
  gr.Markdown(
154
+ """
155
+ # Interactive Gradient Boosting Demo
156
+
157
+ This Space demonstrates how to train a [GradientBoostingClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html#gradientboostingclassifier) from **scikit-learn** on **tabular datasets** hosted on the [Hugging Face Hub](https://huggingface.co/datasets).
158
+
159
+ **Purpose**:
160
+ - Easy explore hyperparameters (_learning_rate, n_estimators, max_depth_) and quickly train an ML model on real data.
161
+ - Visualise model performance via confusion matrix heatmap and a feature importance plot.
162
+
163
+ **How to Use**:
164
+ 1. Select one of the suggested datasets from the dropdown _or_ enter any valid dataset from the [Hugging Face Hub](https://huggingface.co/datasets).
165
+ 2. Click **Load Columns** to retrieve the column names from the dataset's **train** split.
166
+ 3. Choose exactly _one_ **Label column** (the target) and one or more **Feature columns** (the inputs).
167
+ 4. Adjust hyperparameters (learning_rate, n_estimators, max_depth, test_size).
168
+ 5. Click **Train & Evaluate** to train a Gradient Boosting model and see its accuracy, feature importances, and confusion matrix.
169
+
170
+ ---
171
+ **Please Note**:
172
+ - The dataset must have a **"train"** split with tabular columns (i.e., no nested structures).
173
+ - Large datasets may take time to download/train.
174
+ - The confusion matrix helps you see how predictions compare to ground-truth labels. The diagonal cells show correct predictions; off-diagonal cells indicate misclassifications.
175
+ - The feature importance plot shows which features the model relies on the most for its predictions.
176
+
177
+ You are now a machine learning engineer, congratulations πŸ€—
178
+ """
179
  )
180
 
 
181
  with gr.Row():
182
  dataset_dropdown = gr.Dropdown(
183
  label="Choose suggested dataset",
184
  choices=SUGGESTED_DATASETS,
185
+ value=SUGGESTED_DATASETS[0]
186
  )
187
  custom_dataset_id = gr.Textbox(
188
  label="Or enter a custom dataset ID",
189
+ placeholder="e.g. user/my_custom_dataset"
190
  )
191
 
192
  load_cols_btn = gr.Button("Load Columns")
193
  load_cols_info = gr.Markdown()
194
 
 
195
  with gr.Row():
196
  label_col = gr.Dropdown(choices=[], label="Label column (choose 1)")
197
  feature_cols = gr.CheckboxGroup(choices=[], label="Feature columns (choose 1 or more)")
198
 
199
+ # Model Hyperparameters
200
+ learning_rate_slider = gr.Slider(
201
+ minimum=0.01, maximum=1.0, value=0.1, step=0.01,
202
+ label="learning_rate"
203
+ )
204
+ n_estimators_slider = gr.Slider(
205
+ minimum=50, maximum=300, value=100, step=50,
206
+ label="n_estimators"
207
+ )
208
+ max_depth_slider = gr.Slider(
209
+ minimum=1, maximum=10, value=3, step=1,
210
+ label="max_depth"
211
+ )
212
+ test_size_slider = gr.Slider(
213
+ minimum=0.1, maximum=0.9, value=0.3, step=0.1,
214
+ label="test_size fraction (0.1-0.9)"
215
+ )
216
 
217
  train_button = gr.Button("Train & Evaluate")
218