add docs + improve ux/ui
Browse files
app.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
# app.py
|
2 |
-
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
@@ -11,49 +9,48 @@ from sklearn.ensemble import GradientBoostingClassifier
|
|
11 |
from sklearn.model_selection import train_test_split
|
12 |
from sklearn.metrics import accuracy_score, confusion_matrix
|
13 |
|
14 |
-
# In some remote environments, Matplotlib needs to be set to 'Agg' backend
|
15 |
matplotlib.use('Agg')
|
16 |
|
17 |
################################################################################
|
18 |
-
# SUGGESTED_DATASETS:
|
19 |
#
|
20 |
-
# "scikit-learn/iris" ->
|
21 |
-
# "uci/wine" ->
|
|
|
22 |
################################################################################
|
23 |
SUGGESTED_DATASETS = [
|
24 |
"scikit-learn/iris",
|
25 |
"uci/wine",
|
26 |
-
"SKIP/ENTER_CUSTOM"
|
27 |
]
|
28 |
|
29 |
-
|
30 |
def update_columns(dataset_id, custom_dataset_id):
|
31 |
"""
|
32 |
-
|
33 |
-
|
|
|
|
|
34 |
"""
|
35 |
-
# If user picked a suggested dataset (not SKIP), use that
|
36 |
if dataset_id != "SKIP/ENTER_CUSTOM":
|
37 |
final_id = dataset_id
|
38 |
else:
|
39 |
-
# Use the user-supplied dataset ID
|
40 |
final_id = custom_dataset_id.strip()
|
41 |
|
42 |
try:
|
43 |
-
# Load just the "train" split; many HF datasets have train/test/validation
|
44 |
ds = load_dataset(final_id, split="train")
|
45 |
df = pd.DataFrame(ds)
|
46 |
cols = df.columns.tolist()
|
47 |
|
48 |
-
message =
|
49 |
-
|
|
|
|
|
50 |
return (
|
51 |
gr.update(choices=cols, value=None), # label_col dropdown
|
52 |
gr.update(choices=cols, value=[]), # feature_cols checkbox group
|
53 |
message
|
54 |
)
|
55 |
except Exception as e:
|
56 |
-
# If load fails or dataset doesn't exist
|
57 |
err_msg = f"**Error loading** `{final_id}`: {e}"
|
58 |
return (
|
59 |
gr.update(choices=[], value=None),
|
@@ -61,43 +58,42 @@ def update_columns(dataset_id, custom_dataset_id):
|
|
61 |
err_msg
|
62 |
)
|
63 |
|
64 |
-
|
65 |
def train_model(dataset_id, custom_dataset_id, label_column, feature_columns,
|
66 |
learning_rate, n_estimators, max_depth, test_size):
|
67 |
"""
|
68 |
-
1.
|
69 |
-
2. Load
|
70 |
-
3. Train GradientBoostingClassifier.
|
71 |
-
4.
|
72 |
-
|
73 |
-
- Confusion matrix heatmap
|
74 |
"""
|
|
|
75 |
if dataset_id != "SKIP/ENTER_CUSTOM":
|
76 |
final_id = dataset_id
|
77 |
else:
|
78 |
final_id = custom_dataset_id.strip()
|
79 |
|
80 |
-
# Load dataset
|
81 |
ds = load_dataset(final_id, split="train")
|
82 |
df = pd.DataFrame(ds)
|
83 |
|
84 |
-
#
|
85 |
if label_column not in df.columns:
|
86 |
raise ValueError(f"Label column '{label_column}' not found in dataset columns.")
|
87 |
for fc in feature_columns:
|
88 |
if fc not in df.columns:
|
89 |
raise ValueError(f"Feature column '{fc}' not found in dataset columns.")
|
90 |
|
91 |
-
#
|
92 |
X = df[feature_columns].values
|
93 |
y = df[label_column].values
|
94 |
|
95 |
-
#
|
96 |
X_train, X_test, y_train, y_test = train_test_split(
|
97 |
X, y, test_size=test_size, random_state=42
|
98 |
)
|
99 |
|
100 |
-
#
|
101 |
clf = GradientBoostingClassifier(
|
102 |
learning_rate=learning_rate,
|
103 |
n_estimators=int(n_estimators),
|
@@ -106,14 +102,12 @@ def train_model(dataset_id, custom_dataset_id, label_column, feature_columns,
|
|
106 |
)
|
107 |
clf.fit(X_train, y_train)
|
108 |
|
109 |
-
#
|
110 |
y_pred = clf.predict(X_test)
|
111 |
accuracy = accuracy_score(y_test, y_pred)
|
112 |
cm = confusion_matrix(y_test, y_pred)
|
113 |
|
114 |
-
#
|
115 |
-
# 1) Feature importances
|
116 |
-
# 2) Confusion matrix heatmap
|
117 |
fig, axs = plt.subplots(1, 2, figsize=(10, 4))
|
118 |
|
119 |
# Subplot 1: Feature Importances
|
@@ -131,7 +125,7 @@ def train_model(dataset_id, custom_dataset_id, label_column, feature_columns,
|
|
131 |
axs[1].set_xlabel("Predicted")
|
132 |
axs[1].set_ylabel("True")
|
133 |
|
134 |
-
# Optionally annotate each cell with
|
135 |
thresh = cm.max() / 2.0
|
136 |
for i in range(cm.shape[0]):
|
137 |
for j in range(cm.shape[1]):
|
@@ -140,7 +134,7 @@ def train_model(dataset_id, custom_dataset_id, label_column, feature_columns,
|
|
140 |
|
141 |
plt.tight_layout()
|
142 |
|
143 |
-
#
|
144 |
text_summary = (
|
145 |
f"**Dataset used**: `{final_id}`\n\n"
|
146 |
f"**Label column**: `{label_column}`\n\n"
|
@@ -150,44 +144,75 @@ def train_model(dataset_id, custom_dataset_id, label_column, feature_columns,
|
|
150 |
|
151 |
return text_summary, fig
|
152 |
|
153 |
-
|
154 |
-
#
|
|
|
155 |
with gr.Blocks() as demo:
|
156 |
-
|
|
|
157 |
gr.Markdown(
|
158 |
-
"
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
)
|
165 |
|
166 |
-
# Row 1: Dataset selection
|
167 |
with gr.Row():
|
168 |
dataset_dropdown = gr.Dropdown(
|
169 |
label="Choose suggested dataset",
|
170 |
choices=SUGGESTED_DATASETS,
|
171 |
-
value=SUGGESTED_DATASETS[0]
|
172 |
)
|
173 |
custom_dataset_id = gr.Textbox(
|
174 |
label="Or enter a custom dataset ID",
|
175 |
-
placeholder="e.g.
|
176 |
)
|
177 |
|
178 |
load_cols_btn = gr.Button("Load Columns")
|
179 |
load_cols_info = gr.Markdown()
|
180 |
|
181 |
-
# Row 2: label & feature columns
|
182 |
with gr.Row():
|
183 |
label_col = gr.Dropdown(choices=[], label="Label column (choose 1)")
|
184 |
feature_cols = gr.CheckboxGroup(choices=[], label="Feature columns (choose 1 or more)")
|
185 |
|
186 |
-
# Hyperparameters
|
187 |
-
learning_rate_slider = gr.Slider(
|
188 |
-
|
189 |
-
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
train_button = gr.Button("Train & Evaluate")
|
193 |
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
|
|
9 |
from sklearn.model_selection import train_test_split
|
10 |
from sklearn.metrics import accuracy_score, confusion_matrix
|
11 |
|
|
|
12 |
matplotlib.use('Agg')
|
13 |
|
14 |
################################################################################
|
15 |
+
# SUGGESTED_DATASETS: These must actually exist on huggingface.co/datasets
|
16 |
#
|
17 |
+
# "scikit-learn/iris" -> A small, classic Iris dataset with a "train" split
|
18 |
+
# "uci/wine" -> Another small dataset with a "train" split
|
19 |
+
# "SKIP/ENTER_CUSTOM" -> Placeholder to let the user enter a custom dataset ID
|
20 |
################################################################################
|
21 |
SUGGESTED_DATASETS = [
|
22 |
"scikit-learn/iris",
|
23 |
"uci/wine",
|
24 |
+
"SKIP/ENTER_CUSTOM"
|
25 |
]
|
26 |
|
|
|
27 |
def update_columns(dataset_id, custom_dataset_id):
|
28 |
"""
|
29 |
+
After the user chooses a dataset from the dropdown or enters their own,
|
30 |
+
this function loads the dataset's "train" split, converts it to a DataFrame,
|
31 |
+
and returns the columns. These columns are used to populate the Label and
|
32 |
+
Feature selectors in the UI.
|
33 |
"""
|
|
|
34 |
if dataset_id != "SKIP/ENTER_CUSTOM":
|
35 |
final_id = dataset_id
|
36 |
else:
|
|
|
37 |
final_id = custom_dataset_id.strip()
|
38 |
|
39 |
try:
|
|
|
40 |
ds = load_dataset(final_id, split="train")
|
41 |
df = pd.DataFrame(ds)
|
42 |
cols = df.columns.tolist()
|
43 |
|
44 |
+
message = (
|
45 |
+
f"**Loaded dataset**: `{final_id}`\n\n"
|
46 |
+
f"**Columns found**: {cols}"
|
47 |
+
)
|
48 |
return (
|
49 |
gr.update(choices=cols, value=None), # label_col dropdown
|
50 |
gr.update(choices=cols, value=[]), # feature_cols checkbox group
|
51 |
message
|
52 |
)
|
53 |
except Exception as e:
|
|
|
54 |
err_msg = f"**Error loading** `{final_id}`: {e}"
|
55 |
return (
|
56 |
gr.update(choices=[], value=None),
|
|
|
58 |
err_msg
|
59 |
)
|
60 |
|
|
|
61 |
def train_model(dataset_id, custom_dataset_id, label_column, feature_columns,
|
62 |
learning_rate, n_estimators, max_depth, test_size):
|
63 |
"""
|
64 |
+
1. Decide which dataset ID to load (from dropdown or custom).
|
65 |
+
2. Load that dataset's 'train' split, turn into DataFrame, extract X (features) and y (label).
|
66 |
+
3. Train a GradientBoostingClassifier on X_train, y_train.
|
67 |
+
4. Compute accuracy and confusion matrix on X_test, y_test.
|
68 |
+
5. Plot and return feature importances + confusion matrix heatmap + textual summary.
|
|
|
69 |
"""
|
70 |
+
# Resolve final dataset ID
|
71 |
if dataset_id != "SKIP/ENTER_CUSTOM":
|
72 |
final_id = dataset_id
|
73 |
else:
|
74 |
final_id = custom_dataset_id.strip()
|
75 |
|
76 |
+
# Load dataset -> df
|
77 |
ds = load_dataset(final_id, split="train")
|
78 |
df = pd.DataFrame(ds)
|
79 |
|
80 |
+
# Validate columns
|
81 |
if label_column not in df.columns:
|
82 |
raise ValueError(f"Label column '{label_column}' not found in dataset columns.")
|
83 |
for fc in feature_columns:
|
84 |
if fc not in df.columns:
|
85 |
raise ValueError(f"Feature column '{fc}' not found in dataset columns.")
|
86 |
|
87 |
+
# Convert to NumPy arrays
|
88 |
X = df[feature_columns].values
|
89 |
y = df[label_column].values
|
90 |
|
91 |
+
# Train/test split
|
92 |
X_train, X_test, y_train, y_test = train_test_split(
|
93 |
X, y, test_size=test_size, random_state=42
|
94 |
)
|
95 |
|
96 |
+
# Instantiate and train GradientBoostingClassifier
|
97 |
clf = GradientBoostingClassifier(
|
98 |
learning_rate=learning_rate,
|
99 |
n_estimators=int(n_estimators),
|
|
|
102 |
)
|
103 |
clf.fit(X_train, y_train)
|
104 |
|
105 |
+
# Evaluate
|
106 |
y_pred = clf.predict(X_test)
|
107 |
accuracy = accuracy_score(y_test, y_pred)
|
108 |
cm = confusion_matrix(y_test, y_pred)
|
109 |
|
110 |
+
# Create Matplotlib figure with feature importances + confusion matrix
|
|
|
|
|
111 |
fig, axs = plt.subplots(1, 2, figsize=(10, 4))
|
112 |
|
113 |
# Subplot 1: Feature Importances
|
|
|
125 |
axs[1].set_xlabel("Predicted")
|
126 |
axs[1].set_ylabel("True")
|
127 |
|
128 |
+
# Optionally annotate each cell with numeric counts
|
129 |
thresh = cm.max() / 2.0
|
130 |
for i in range(cm.shape[0]):
|
131 |
for j in range(cm.shape[1]):
|
|
|
134 |
|
135 |
plt.tight_layout()
|
136 |
|
137 |
+
# Textual summary
|
138 |
text_summary = (
|
139 |
f"**Dataset used**: `{final_id}`\n\n"
|
140 |
f"**Label column**: `{label_column}`\n\n"
|
|
|
144 |
|
145 |
return text_summary, fig
|
146 |
|
147 |
+
###############################################################################
|
148 |
+
# Gradio UI
|
149 |
+
###############################################################################
|
150 |
with gr.Blocks() as demo:
|
151 |
+
|
152 |
+
# High-level title and description
|
153 |
gr.Markdown(
|
154 |
+
"""
|
155 |
+
# Interactive Gradient Boosting Demo
|
156 |
+
|
157 |
+
This Space demonstrates how to train a [GradientBoostingClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html#gradientboostingclassifier) from **scikit-learn** on **tabular datasets** hosted on the [Hugging Face Hub](https://huggingface.co/datasets).
|
158 |
+
|
159 |
+
**Purpose**:
|
160 |
+
- Easy explore hyperparameters (_learning_rate, n_estimators, max_depth_) and quickly train an ML model on real data.
|
161 |
+
- Visualise model performance via confusion matrix heatmap and a feature importance plot.
|
162 |
+
|
163 |
+
**How to Use**:
|
164 |
+
1. Select one of the suggested datasets from the dropdown _or_ enter any valid dataset from the [Hugging Face Hub](https://huggingface.co/datasets).
|
165 |
+
2. Click **Load Columns** to retrieve the column names from the dataset's **train** split.
|
166 |
+
3. Choose exactly _one_ **Label column** (the target) and one or more **Feature columns** (the inputs).
|
167 |
+
4. Adjust hyperparameters (learning_rate, n_estimators, max_depth, test_size).
|
168 |
+
5. Click **Train & Evaluate** to train a Gradient Boosting model and see its accuracy, feature importances, and confusion matrix.
|
169 |
+
|
170 |
+
---
|
171 |
+
**Please Note**:
|
172 |
+
- The dataset must have a **"train"** split with tabular columns (i.e., no nested structures).
|
173 |
+
- Large datasets may take time to download/train.
|
174 |
+
- The confusion matrix helps you see how predictions compare to ground-truth labels. The diagonal cells show correct predictions; off-diagonal cells indicate misclassifications.
|
175 |
+
- The feature importance plot shows which features the model relies on the most for its predictions.
|
176 |
+
|
177 |
+
You are now a machine learning engineer, congratulations π€
|
178 |
+
"""
|
179 |
)
|
180 |
|
|
|
181 |
with gr.Row():
|
182 |
dataset_dropdown = gr.Dropdown(
|
183 |
label="Choose suggested dataset",
|
184 |
choices=SUGGESTED_DATASETS,
|
185 |
+
value=SUGGESTED_DATASETS[0]
|
186 |
)
|
187 |
custom_dataset_id = gr.Textbox(
|
188 |
label="Or enter a custom dataset ID",
|
189 |
+
placeholder="e.g. user/my_custom_dataset"
|
190 |
)
|
191 |
|
192 |
load_cols_btn = gr.Button("Load Columns")
|
193 |
load_cols_info = gr.Markdown()
|
194 |
|
|
|
195 |
with gr.Row():
|
196 |
label_col = gr.Dropdown(choices=[], label="Label column (choose 1)")
|
197 |
feature_cols = gr.CheckboxGroup(choices=[], label="Feature columns (choose 1 or more)")
|
198 |
|
199 |
+
# Model Hyperparameters
|
200 |
+
learning_rate_slider = gr.Slider(
|
201 |
+
minimum=0.01, maximum=1.0, value=0.1, step=0.01,
|
202 |
+
label="learning_rate"
|
203 |
+
)
|
204 |
+
n_estimators_slider = gr.Slider(
|
205 |
+
minimum=50, maximum=300, value=100, step=50,
|
206 |
+
label="n_estimators"
|
207 |
+
)
|
208 |
+
max_depth_slider = gr.Slider(
|
209 |
+
minimum=1, maximum=10, value=3, step=1,
|
210 |
+
label="max_depth"
|
211 |
+
)
|
212 |
+
test_size_slider = gr.Slider(
|
213 |
+
minimum=0.1, maximum=0.9, value=0.3, step=0.1,
|
214 |
+
label="test_size fraction (0.1-0.9)"
|
215 |
+
)
|
216 |
|
217 |
train_button = gr.Button("Train & Evaluate")
|
218 |
|