fix visualisations + add heatmap
Browse files
app.py
CHANGED
@@ -1,22 +1,28 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
|
|
3 |
import matplotlib.pyplot as plt
|
4 |
from sklearn.datasets import load_iris
|
5 |
from sklearn.ensemble import GradientBoostingClassifier
|
6 |
from sklearn.model_selection import train_test_split
|
7 |
from sklearn.metrics import accuracy_score, confusion_matrix
|
8 |
|
|
|
|
|
|
|
|
|
9 |
iris = load_iris()
|
10 |
X, y = iris.data, iris.target
|
11 |
feature_names = iris.feature_names
|
12 |
class_names = iris.target_names
|
13 |
|
|
|
14 |
X_train, X_test, y_train, y_test = train_test_split(
|
15 |
X, y, test_size=0.3, random_state=42
|
16 |
)
|
17 |
|
18 |
def train_and_evaluate(learning_rate, n_estimators, max_depth):
|
19 |
-
# Train model
|
20 |
clf = GradientBoostingClassifier(
|
21 |
learning_rate=learning_rate,
|
22 |
n_estimators=n_estimators,
|
@@ -25,29 +31,52 @@ def train_and_evaluate(learning_rate, n_estimators, max_depth):
|
|
25 |
)
|
26 |
clf.fit(X_train, y_train)
|
27 |
|
28 |
-
# Predict
|
29 |
y_pred = clf.predict(X_test)
|
|
|
|
|
30 |
accuracy = accuracy_score(y_test, y_pred)
|
|
|
|
|
31 |
cm = confusion_matrix(y_test, y_pred)
|
32 |
|
33 |
-
#
|
34 |
-
|
35 |
|
36 |
-
#
|
37 |
importances = clf.feature_importances_
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
def predict_species(sepal_length, sepal_width, petal_length, petal_width,
|
53 |
learning_rate, n_estimators, max_depth):
|
@@ -65,13 +94,14 @@ def predict_species(sepal_length, sepal_width, petal_length, petal_width,
|
|
65 |
with gr.Blocks() as demo:
|
66 |
with gr.Tab("Train & Evaluate"):
|
67 |
gr.Markdown("## Train a GradientBoostingClassifier on the Iris dataset")
|
|
|
68 |
learning_rate_slider = gr.Slider(0.01, 1.0, value=0.1, step=0.01, label="learning_rate")
|
69 |
n_estimators_slider = gr.Slider(50, 300, value=100, step=50, label="n_estimators")
|
70 |
max_depth_slider = gr.Slider(1, 10, value=3, step=1, label="max_depth")
|
71 |
|
72 |
train_button = gr.Button("Train & Evaluate")
|
73 |
output_text = gr.Textbox(label="Results")
|
74 |
-
output_plot = gr.Plot(label="Feature
|
75 |
|
76 |
train_button.click(
|
77 |
fn=train_and_evaluate,
|
@@ -81,14 +111,15 @@ with gr.Blocks() as demo:
|
|
81 |
|
82 |
with gr.Tab("Predict"):
|
83 |
gr.Markdown("## Predict Iris Species with GradientBoostingClassifier")
|
|
|
84 |
sepal_length_input = gr.Number(value=5.1, label=feature_names[0])
|
85 |
-
sepal_width_input
|
86 |
petal_length_input = gr.Number(value=1.4, label=feature_names[2])
|
87 |
-
petal_width_input
|
88 |
|
89 |
-
learning_rate_slider2
|
90 |
-
n_estimators_slider2
|
91 |
-
max_depth_slider2
|
92 |
|
93 |
predict_button = gr.Button("Predict")
|
94 |
prediction_text = gr.Textbox(label="Prediction")
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
+
import matplotlib
|
4 |
import matplotlib.pyplot as plt
|
5 |
from sklearn.datasets import load_iris
|
6 |
from sklearn.ensemble import GradientBoostingClassifier
|
7 |
from sklearn.model_selection import train_test_split
|
8 |
from sklearn.metrics import accuracy_score, confusion_matrix
|
9 |
|
10 |
+
# This line ensures Matplotlib doesn't try to open windows in certain environments:
|
11 |
+
matplotlib.use('Agg')
|
12 |
+
|
13 |
+
# Load the Iris dataset
|
14 |
iris = load_iris()
|
15 |
X, y = iris.data, iris.target
|
16 |
feature_names = iris.feature_names
|
17 |
class_names = iris.target_names
|
18 |
|
19 |
+
# Train/test split
|
20 |
X_train, X_test, y_train, y_test = train_test_split(
|
21 |
X, y, test_size=0.3, random_state=42
|
22 |
)
|
23 |
|
24 |
def train_and_evaluate(learning_rate, n_estimators, max_depth):
|
25 |
+
# Train the model
|
26 |
clf = GradientBoostingClassifier(
|
27 |
learning_rate=learning_rate,
|
28 |
n_estimators=n_estimators,
|
|
|
31 |
)
|
32 |
clf.fit(X_train, y_train)
|
33 |
|
34 |
+
# Predict on test set
|
35 |
y_pred = clf.predict(X_test)
|
36 |
+
|
37 |
+
# Calculate accuracy
|
38 |
accuracy = accuracy_score(y_test, y_pred)
|
39 |
+
|
40 |
+
# Calculate confusion matrix
|
41 |
cm = confusion_matrix(y_test, y_pred)
|
42 |
|
43 |
+
# Create a single figure with 2 subplots
|
44 |
+
fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))
|
45 |
|
46 |
+
# --- Subplot 1: Feature Importances ---
|
47 |
importances = clf.feature_importances_
|
48 |
+
axs[0].barh(range(len(feature_names)), importances, color='skyblue')
|
49 |
+
axs[0].set_yticks(range(len(feature_names)))
|
50 |
+
axs[0].set_yticklabels(feature_names)
|
51 |
+
axs[0].set_xlabel("Importance")
|
52 |
+
axs[0].set_title("Feature Importances")
|
53 |
+
|
54 |
+
# --- Subplot 2: Confusion Matrix Heatmap ---
|
55 |
+
im = axs[1].imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
|
56 |
+
axs[1].set_title("Confusion Matrix")
|
57 |
+
# Add colorbar
|
58 |
+
cbar = fig.colorbar(im, ax=axs[1])
|
59 |
+
# Tick marks for x/y axes
|
60 |
+
axs[1].set_xticks(range(len(class_names)))
|
61 |
+
axs[1].set_yticks(range(len(class_names)))
|
62 |
+
axs[1].set_xticklabels(class_names, rotation=45, ha="right")
|
63 |
+
axs[1].set_yticklabels(class_names)
|
64 |
+
axs[1].set_ylabel('True Label')
|
65 |
+
axs[1].set_xlabel('Predicted Label')
|
66 |
+
|
67 |
+
# Write the counts in each cell
|
68 |
+
thresh = cm.max() / 2.0
|
69 |
+
for i in range(cm.shape[0]):
|
70 |
+
for j in range(cm.shape[1]):
|
71 |
+
color = "white" if cm[i, j] > thresh else "black"
|
72 |
+
axs[1].text(j, i, format(cm[i, j], "d"),
|
73 |
+
ha="center", va="center", color=color)
|
74 |
+
|
75 |
+
plt.tight_layout()
|
76 |
+
|
77 |
+
# Return textual results + the figure
|
78 |
+
results_text = f"Accuracy: {accuracy:.3f}"
|
79 |
+
return results_text, fig
|
80 |
|
81 |
def predict_species(sepal_length, sepal_width, petal_length, petal_width,
|
82 |
learning_rate, n_estimators, max_depth):
|
|
|
94 |
with gr.Blocks() as demo:
|
95 |
with gr.Tab("Train & Evaluate"):
|
96 |
gr.Markdown("## Train a GradientBoostingClassifier on the Iris dataset")
|
97 |
+
|
98 |
learning_rate_slider = gr.Slider(0.01, 1.0, value=0.1, step=0.01, label="learning_rate")
|
99 |
n_estimators_slider = gr.Slider(50, 300, value=100, step=50, label="n_estimators")
|
100 |
max_depth_slider = gr.Slider(1, 10, value=3, step=1, label="max_depth")
|
101 |
|
102 |
train_button = gr.Button("Train & Evaluate")
|
103 |
output_text = gr.Textbox(label="Results")
|
104 |
+
output_plot = gr.Plot(label="Feature Importances & Confusion Matrix")
|
105 |
|
106 |
train_button.click(
|
107 |
fn=train_and_evaluate,
|
|
|
111 |
|
112 |
with gr.Tab("Predict"):
|
113 |
gr.Markdown("## Predict Iris Species with GradientBoostingClassifier")
|
114 |
+
|
115 |
sepal_length_input = gr.Number(value=5.1, label=feature_names[0])
|
116 |
+
sepal_width_input = gr.Number(value=3.5, label=feature_names[1])
|
117 |
petal_length_input = gr.Number(value=1.4, label=feature_names[2])
|
118 |
+
petal_width_input = gr.Number(value=0.2, label=feature_names[3])
|
119 |
|
120 |
+
learning_rate_slider2 = gr.Slider(0.01, 1.0, value=0.1, step=0.01, label="learning_rate")
|
121 |
+
n_estimators_slider2 = gr.Slider(50, 300, value=100, step=50, label="n_estimators")
|
122 |
+
max_depth_slider2 = gr.Slider(1, 10, value=3, step=1, label="max_depth")
|
123 |
|
124 |
predict_button = gr.Button("Predict")
|
125 |
prediction_text = gr.Textbox(label="Prediction")
|