Spaces:
Runtime error
Runtime error
File size: 7,614 Bytes
cf815ef 306781b cf815ef 306781b cf815ef 306781b d5a7196 306781b cf815ef 017ac29 cf815ef 21259cf 345a5f2 cf815ef 345a5f2 017ac29 345a5f2 21259cf cf815ef 21259cf cf815ef 345a5f2 cf815ef 21259cf cf815ef 21259cf cf815ef 21259cf bd675c8 21259cf bd675c8 21259cf cf815ef bd675c8 21259cf cf815ef bd675c8 21259cf cf815ef bd675c8 cf815ef 345a5f2 cf815ef bd675c8 cf815ef bd675c8 cf815ef 21259cf cf815ef 345a5f2 cf815ef bd675c8 cf815ef 345a5f2 cf815ef bd675c8 21259cf bd675c8 cf815ef bd675c8 cf815ef 21259cf 0233952 21259cf cf815ef 21259cf cf815ef 21259cf cf815ef 21259cf cf815ef 21259cf cf815ef 21259cf cf815ef 0233952 d5a7196 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import gradio as gr
import os
import thinkingframes
import soundfile as sf
import numpy as np
import logging
from dotenv import load_dotenv
from policy import user_acceptance_policy
from styles import theme
from thinkingframes import generate_prompt, strategy_options, questions
from utils import get_image_html, collect_student_info
from database_functions import add_user_privacy, add_submission
from tab_teachers_dashboard import create_teachers_dashboard_tab
from config import CLASS_OPTIONS
import spaces
import edge_tts
import tempfile
# Load environment variables
load_dotenv()
# Whisper API settings
API_URL = "https://api-inference.huggingface.co/models/whisper-large"
headers = {"Authorization": f"Bearer {os.getenv('HF_AUTH_TOKEN')}"}
def whisper_query(filename):
with open(filename, "rb") as f:
data = f.read()
response = requests.post(API_URL, headers=headers, data=data)
return response.json()
# For maintaining user session (to keep track of userID)
user_state = gr.State(value="")
# Load the Meta-Llama-3-8B model from Hugging Face
llm = gr.load("meta-llama/Meta-Llama-3-8B", src="models")
image_path = "picturePerformance.jpg"
img_html = get_image_html(image_path)
@spaces.GPU(duration=120)
def transcribe(audio_path):
response = whisper_query(audio_path)
if "text" in response:
return response["text"]
else:
raise ValueError("Transcription failed.")
@spaces.GPU(duration=120)
def generate_feedback(user_id, question_choice, strategy_choice, message, feedback_level):
current_question_index = questions.index(question_choice)
strategy, explanation = strategy_options[strategy_choice]
conversation = [{
"role": "system",
"content": thinkingframes.generate_system_message(current_question_index, feedback_level)
}, {
"role": "user",
"content": message
}]
feedback = llm(conversation)[0]["generated_text"]
questionNo = current_question_index + 1
add_submission(user_id, message, feedback, int(0), "", questionNo)
return feedback
@spaces.GPU(duration=60)
def generate_audio_feedback(feedback_buffer):
communicate = edge_tts.Communicate(feedback_buffer)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
asyncio.run(communicate.save(tmp_path))
return tmp_path
def predict(question_choice, strategy_choice, feedback_level, audio):
current_audio_output = None
if audio is None:
return [("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "No audio data received. Please try again.")], current_audio_output
sample_rate, audio_data = audio
if audio_data is None or len(audio_data) == 0:
return [("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "No audio data received. Please try again.")], current_audio_output
audio_path = "audio.wav"
if not isinstance(audio_data, np.ndarray):
raise ValueError("audio_data must be a numpy array")
sf.write(audio_path, audio_data, sample_rate)
chat_history = [("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "Transcribing your audio, please listen to your oral response while waiting ...")]
try:
student_response = transcribe(audio_path)
if not student_response.strip():
return [("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "Transcription failed. Please try again or seek assistance.")], current_audio_output
chat_history.append(("Student", student_response))
chat_history.append(("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "Transcription complete. Generating feedback. Please continue listening to your oral response while waiting ..."))
feedback = generate_feedback(int(user_state.value), question_choice, strategy_choice, student_response, feedback_level)
chat_history.append(("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", feedback))
audio_output_path = generate_audio_feedback(feedback)
current_audio_output = (24000, audio_output_path)
return chat_history, current_audio_output
except Exception as e:
logging.error(f"An error occurred: {str(e)}", exc_info=True)
return [("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "An error occurred. Please try again or seek assistance.")], current_audio_output
def toggle_oral_coach_visibility(class_name, index_no, policy_checked):
if not policy_checked:
return "Please agree to the Things to Note When using the Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡ before submitting.", gr.update(visible=False)
user_id, message = add_user_privacy(class_name, index_no)
if "Error" in message:
return message, gr.update(visible=False)
user_state.value = user_id
return message, gr.update(visible=True)
with gr.Blocks(title="Oral Coach powered by ZeroGPU⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡ and Meta AI 🦙 (LLama3)", theme=theme, css="footer {visibility: hidden}textbox{resize:none}") as demo:
with gr.Tab("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡"):
gr.Markdown("## Student Information")
class_name = gr.Dropdown(label="Class", choices=CLASS_OPTIONS)
index_no = gr.Dropdown(label="Index No", choices=[f"{i:02}" for i in range(1, 46)])
policy_text = gr.Markdown(user_acceptance_policy)
policy_checkbox = gr.Checkbox(label="I have read and agree to the Things to Note When using the Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", value=False)
submit_info_btn = gr.Button("Submit Info")
info_output = gr.Text()
with gr.Column(visible=False) as oral_coach_content:
gr.Markdown("## Powered by Hugging Face")
gr.Markdown(img_html)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Step 1: Choose a Question")
question_choice = gr.Radio(thinkingframes.questions, label="Questions", value=thinkingframes.questions[0])
gr.Markdown("### Step 2: Choose a Thinking Frame")
strategy_choice = gr.Dropdown(list(strategy_options.keys()), label="Thinking Frame", value=list(strategy_options.keys())[0])
gr.Markdown("### Step 3: Choose Feedback Level")
feedback_level = gr.Radio(["Brief Feedback", "Moderate Feedback", "Comprehensive Feedback"], label="Feedback Level")
feedback_level.value = "Brief Feedback"
with gr.Column(scale=1):
gr.Markdown("### Step 4: Record Your Answer")
audio_input = gr.Audio(type="numpy", sources=["microphone"], label="Record")
submit_answer_btn = gr.Button("Submit Oral Response")
gr.Markdown("### Step 5: Review your personalised feedback")
feedback_output = gr.Chatbot(label="Feedback", scale=4, height=700, show_label=True)
audio_output = gr.Audio(type="numpy", label="Audio Playback", format="wav", autoplay="True")
submit_answer_btn.click(
predict,
inputs=[question_choice, strategy_choice, feedback_level, audio_input],
outputs=[feedback_output, audio_output]
)
submit_info_btn.click(
toggle_oral_coach_visibility,
inputs=[class_name, index_no, policy_checkbox],
outputs=[info_output, oral_coach_content]
)
create_teachers_dashboard_tab()
demo.queue(max_size=20)
demo.launch()
|