simonraj commited on
Commit
21259cf
·
verified ·
1 Parent(s): 306781b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -134
app.py CHANGED
@@ -33,119 +33,62 @@ import tempfile
33
 
34
  load_dotenv()
35
 
36
- # Load CSS from external file
37
- with open('styles.css', 'r') as file:
38
- css = file.read()
39
 
40
  # For maintaining user session (to keep track of userID)
41
  user_state = gr.State(value="")
42
 
43
- load_dotenv()
 
 
 
 
 
 
 
 
44
 
45
- client = OpenAI()
46
  image_path = "picturePerformance.jpg"
47
  img_html = get_image_html(image_path)
48
 
49
- # Create a thread pool executor
50
  executor = ThreadPoolExecutor()
51
 
52
- def transcribe_audio(audio_path):
53
- with open(audio_path, "rb") as audio_file:
54
- transcript = client.audio.transcriptions.create(file=audio_file, model="whisper-1", language="en")
55
- return transcript.text
56
-
57
- async def generate_feedback(user_id, question_choice, strategy_choice, message, feedback_level):
58
- current_question_index = thinkingframes.questions.index(question_choice)
59
- strategy, explanation = thinkingframes.strategy_options[strategy_choice]
60
 
61
  conversation = [{
62
  "role": "system",
63
- "content": f"You are an expert Primary 6 English Language Teacher in a Singapore Primary school, "
64
- f"directly guiding a Primary 6 student in Singapore in their oral responses. "
65
- f"Format the feedback in Markdown so that it can be easily read. "
66
- f"Address the student directly in the second person in your feedback. "
67
- f"The student is answering the question: '{thinkingframes.questions[current_question_index]}'. "
68
- f"For Question 1, consider the picture description: '{thinkingframes.description}'. "
69
- f"For Questions 2 and 3, the picture is not relevant, so the student should not refer to it in their response. "
70
- f"Analyze the student's response using the following step-by-step approach: "
71
- f"1. Evaluate the response against the {strategy} thinking frame. "
72
- f"2. Assess how well the student's response addresses each component of the {strategy} thinking frame: "
73
- f" - Assign emoticon scores based on how well the student comprehensively covered each component: "
74
- f" - 😊😊😊 (three smiling faces) for a good coverage "
75
- f" - 😊😊 (two smiling faces) for an average coverage "
76
- f" - 😊 (one smiling face) for a poor coverage "
77
- f" - Provide a clear, direct, and concise explanation of how well the answer addresses each component. "
78
- f" - Identify specific areas for improvement in students responses, and provide targeted suggestions for improvement. "
79
- f"3. Identify overall strengths and areas for improvement in the student's response using the {strategy} to format and provide targeted areas for improvement. "
80
- f"4. Provide specific feedback on grammar, vocabulary, and sentence structure. "
81
- f" Suggest age-appropriate enhancements that are one level higher than the student's current response. "
82
- f"5. Conclude with follow-up questions for reflection. "
83
- f"If the student's response deviates from the question, provide clear and concise feedback to help them refocus and try again. "
84
- f"Ensure that the vocabulary and sentence structure recommendations are achievable for Primary 6 students in Singapore. "
85
- f"Example Feedback Structure for Each Component: "
86
- f"Component: [Component Name] "
87
- f"Score: [Smiling emoticons] "
88
- f"Explanation: [Clear, direct, and concise explanation of how well the answer addresses the component. Identify specific areas for improvement, and provide targeted suggestions for improvement.] "
89
- f"{thinkingframes.generate_prompt(feedback_level)}"
90
  }, {
91
  "role": "user",
92
  "content": message
93
  }]
94
 
95
- response = client.chat.completions.create(
96
- model='gpt-4o-2024-05-13',
97
- messages=conversation,
98
- temperature=0.6,
99
- max_tokens=1000,
100
- stream=True
101
- )
102
-
103
- chat_history = [] # Initialize chat history outside the loop
104
- full_feedback = "" # Accumulate the entire feedback message
105
- try:
106
- for chunk in response:
107
- if chunk.choices[0].delta and chunk.choices[0].delta.content:
108
- feedback_chunk = chunk.choices[0].delta.content
109
- full_feedback += feedback_chunk # Accumulate the feedback
110
- await asyncio.sleep(0)
111
-
112
- # Append the complete feedback to the chat history
113
- chat_history.append(("Oral Coach ⚡ ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", full_feedback))
114
- yield chat_history # Yield the chat history only once
115
-
116
- except Exception as e:
117
- logging.error(f"An error occurred during feedback generation: {str(e)}")
118
 
119
  questionNo = current_question_index + 1
120
- # Save complete feedback after streaming
121
- add_submission(user_id, message, full_feedback, int(0), "", questionNo)
122
-
123
- async def generate_audio_feedback(feedback_buffer):
124
- try:
125
- response = client.audio.speech.create(
126
- model="tts-1",
127
- voice="alloy",
128
- input=feedback_buffer,
129
- response_format="wav"
130
- )
131
 
132
- audio_data = np.frombuffer(response.read(), dtype=np.int16)
133
- sample_rate = 24000 # Default sample rate for OpenAI's WAV output
134
 
135
- return (sample_rate, audio_data)
136
-
137
- except Exception as e:
138
- logging.error(f"An error occurred during speech generation: {str(e)}")
139
- return None # Return None in case of an error
 
 
140
 
141
  async def predict(question_choice, strategy_choice, feedback_level, audio):
142
- current_audio_output = None # Initialize current_audio_output to None
143
- final_feedback = "" # Store only the assistant's feedback
144
 
145
  if audio is None:
146
  yield [("Oral Coach ⚡ ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "No audio data received. Please try again.")], current_audio_output
147
  return
148
-
149
  sample_rate, audio_data = audio
150
 
151
  if audio_data is None or len(audio_data) == 0:
@@ -161,58 +104,60 @@ async def predict(question_choice, strategy_choice, feedback_level, audio):
161
  yield chat_history, current_audio_output
162
 
163
  try:
164
- transcription_future = executor.submit(transcribe_audio, audio_path)
165
  student_response = await asyncio.wrap_future(transcription_future)
166
 
167
  if not student_response.strip():
168
  yield [("Oral Coach ⚡ ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "Transcription failed. Please try again or seek assistance.")], current_audio_output
169
  return
170
 
171
- chat_history.append(("Student", student_response)) # Add student's transcript
172
  yield chat_history, current_audio_output
173
 
174
  chat_history.append(("Oral Coach ⚡ ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "Transcription complete. Generating feedback. Please continue listening to your oral response while waiting ..."))
175
  yield chat_history, current_audio_output
176
 
177
- moderation_response = client.moderations.create(input=student_response)
178
- flagged = any(result.flagged for result in moderation_response.results)
179
- if flagged:
180
- moderated_message = "The message has been flagged. Please see your teacher to clarify."
181
- questionNo = thinkingframes.questions.index(question_choice) + 1
182
- add_submission(int(user_state.value), moderated_message, "", int(0), "", questionNo)
183
- yield chat_history, current_audio_output
184
- return
185
 
186
- async for chat_update in generate_feedback(int(user_state.value), question_choice, strategy_choice, student_response, feedback_level):
187
- # Append the assistant's feedback to the existing chat_history
188
- chat_history.extend(chat_update)
189
- final_feedback = chat_history[-1][1] # Update final_feedback with the latest chunk
190
- yield chat_history, current_audio_output # Yield audio output
191
 
192
- feedback_buffer = final_feedback # Use final_feedback for TTS
193
- audio_task = asyncio.create_task(generate_audio_feedback(feedback_buffer))
194
- current_audio_output = await audio_task # Store audio output
195
- yield chat_history, current_audio_output # Yield audio output
 
196
 
197
  except Exception as e:
198
  logging.error(f"An error occurred: {str(e)}", exc_info=True)
199
  yield [("Oral Coach ⚡ ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "An error occurred. Please try again or seek assistance.")], current_audio_output
200
 
201
- with gr.Blocks(title="Oral Coach ⚡ ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", theme=theme, css=css) as app:
202
- with gr.Tab("Oral Coach ⚡ ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡"):
 
 
 
 
 
 
 
 
 
 
203
  gr.Markdown("## Student Information")
204
  class_name = gr.Dropdown(label="Class", choices=CLASS_OPTIONS)
205
  index_no = gr.Dropdown(label="Index No", choices=[f"{i:02}" for i in range(1, 46)])
206
 
207
  policy_text = gr.Markdown(user_acceptance_policy)
208
- policy_checkbox = gr.Checkbox(label="I have read and agree to the Things to Note When using the Oral Coach ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", value=False)
209
 
210
  submit_info_btn = gr.Button("Submit Info")
211
  info_output = gr.Text()
212
-
213
  with gr.Column(visible=False) as oral_coach_content:
214
- gr.Markdown("## English Language Oral Coach ⚡ ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡")
215
- gr.Markdown(img_html) # Display the image
216
  with gr.Row():
217
  with gr.Column(scale=1):
218
  gr.Markdown("### Step 1: Choose a Question")
@@ -229,31 +174,14 @@ with gr.Blocks(title="Oral Coach ⚡ ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", theme=t
229
  submit_answer_btn = gr.Button("Submit Oral Response")
230
 
231
  gr.Markdown("### Step 5: Review your personalised feedback")
232
- feedback_output = gr.Chatbot(
233
- label="Feedback",
234
- scale=4,
235
- height=700,
236
- show_label=True
237
- )
238
- #audio
239
- #submit_answer_here
240
  audio_output = gr.Audio(type="numpy", label="Audio Playback", format="wav", autoplay="True")
241
 
242
- submit_answer_btn.click(
243
- predict,
244
- inputs=[question_choice, strategy_choice, feedback_level, audio_input],
245
- outputs=[feedback_output, audio_output],
246
- api_name="predict"
247
- )
248
-
249
- def toggle_oral_coach_visibility(class_name, index_no, policy_checked):
250
- if not policy_checked:
251
- return "Please agree to the Things to Note When using the Oral Coach ⚡ ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡ before submitting.", gr.update(visible=False)
252
- validation_passed, message, userid = collect_student_info(class_name, index_no)
253
- if not validation_passed:
254
- return message, gr.update(visible=False)
255
- user_state.value = userid
256
- return message, gr.update(visible=True)
257
 
258
  submit_info_btn.click(
259
  toggle_oral_coach_visibility,
@@ -261,7 +189,6 @@ with gr.Blocks(title="Oral Coach ⚡ ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", theme=t
261
  outputs=[info_output, oral_coach_content]
262
  )
263
 
264
- # Define other tabs like Teacher's Dashboard
265
  create_teachers_dashboard_tab()
266
 
267
  app.queue(max_size=20).launch(
 
33
 
34
  load_dotenv()
35
 
36
+ default_lang = "en"
37
+ engines = {default_lang: Model(default_lang)}
 
38
 
39
  # For maintaining user session (to keep track of userID)
40
  user_state = gr.State(value="")
41
 
42
+ @spaces.GPU(duration=120)
43
+ def transcribe(audio):
44
+ lang = "en"
45
+ model = engines[lang]
46
+ text = model.stt_file(audio)[0]
47
+ return text
48
+
49
+ # Load the Meta-Llama-3-8B model from Hugging Face
50
+ llm = pipeline("text-generation", model="models/meta-llama/Meta-Llama-3-8B")
51
 
 
52
  image_path = "picturePerformance.jpg"
53
  img_html = get_image_html(image_path)
54
 
 
55
  executor = ThreadPoolExecutor()
56
 
57
+ @spaces.GPU(duration=120)
58
+ def generate_feedback(user_id, question_choice, strategy_choice, message, feedback_level):
59
+ current_question_index = questions.index(question_choice)
60
+ strategy, explanation = strategy_options[strategy_choice]
 
 
 
 
61
 
62
  conversation = [{
63
  "role": "system",
64
+ "content": thinkingframes.generate_system_message(current_question_index, feedback_level)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
  }, {
66
  "role": "user",
67
  "content": message
68
  }]
69
 
70
+ feedback = llm(conversation, max_length=1000, num_return_sequences=1)[0]["generated_text"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
 
72
  questionNo = current_question_index + 1
73
+ add_submission(user_id, message, feedback, int(0), "", questionNo)
 
 
 
 
 
 
 
 
 
 
74
 
75
+ return feedback
 
76
 
77
+ @spaces.GPU(duration=60)
78
+ async def generate_audio_feedback(feedback_buffer):
79
+ communicate = edge_tts.Communicate(feedback_buffer)
80
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
81
+ tmp_path = tmp_file.name
82
+ await communicate.save(tmp_path)
83
+ return tmp_path
84
 
85
  async def predict(question_choice, strategy_choice, feedback_level, audio):
86
+ current_audio_output = None
 
87
 
88
  if audio is None:
89
  yield [("Oral Coach ⚡ ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "No audio data received. Please try again.")], current_audio_output
90
  return
91
+
92
  sample_rate, audio_data = audio
93
 
94
  if audio_data is None or len(audio_data) == 0:
 
104
  yield chat_history, current_audio_output
105
 
106
  try:
107
+ transcription_future = executor.submit(transcribe, audio_path)
108
  student_response = await asyncio.wrap_future(transcription_future)
109
 
110
  if not student_response.strip():
111
  yield [("Oral Coach ⚡ ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "Transcription failed. Please try again or seek assistance.")], current_audio_output
112
  return
113
 
114
+ chat_history.append(("Student", student_response))
115
  yield chat_history, current_audio_output
116
 
117
  chat_history.append(("Oral Coach ⚡ ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "Transcription complete. Generating feedback. Please continue listening to your oral response while waiting ..."))
118
  yield chat_history, current_audio_output
119
 
120
+ feedback_future = executor.submit(generate_feedback, int(user_state.value), question_choice, strategy_choice, student_response, feedback_level)
121
+ feedback = await asyncio.wrap_future(feedback_future)
 
 
 
 
 
 
122
 
123
+ chat_history.append(("Oral Coach ⚡ ϞϞ(๑⚈ ․̫ ⚈๑) ⚡", feedback))
124
+ yield chat_history, current_audio_output
 
 
 
125
 
126
+ audio_future = executor.submit(generate_audio_feedback, feedback)
127
+ audio_output_path = await asyncio.wrap_future(audio_future)
128
+
129
+ current_audio_output = (24000, audio_output_path)
130
+ yield chat_history, current_audio_output
131
 
132
  except Exception as e:
133
  logging.error(f"An error occurred: {str(e)}", exc_info=True)
134
  yield [("Oral Coach ⚡ ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "An error occurred. Please try again or seek assistance.")], current_audio_output
135
 
136
+ # Modify the toggle_oral_coach_visibility function to call add_user_privacy and store the returned user_id in user_state.value
137
+ def toggle_oral_coach_visibility(class_name, index_no, policy_checked):
138
+ if not policy_checked:
139
+ return "Please agree to the Things to Note When using the Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡ before submitting.", gr.update(visible=False)
140
+ user_id, message = add_user_privacy(class_name, index_no)
141
+ if "Error" in message:
142
+ return message, gr.update(visible=False)
143
+ user_state.value = user_id
144
+ return message, gr.update(visible=True)
145
+
146
+ with gr.Blocks(title="Oral Coach powered by Hugging Face", theme=theme) as app:
147
+ with gr.Tab("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡"):
148
  gr.Markdown("## Student Information")
149
  class_name = gr.Dropdown(label="Class", choices=CLASS_OPTIONS)
150
  index_no = gr.Dropdown(label="Index No", choices=[f"{i:02}" for i in range(1, 46)])
151
 
152
  policy_text = gr.Markdown(user_acceptance_policy)
153
+ policy_checkbox = gr.Checkbox(label="I have read and agree to the Things to Note When using the Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", value=False)
154
 
155
  submit_info_btn = gr.Button("Submit Info")
156
  info_output = gr.Text()
157
+
158
  with gr.Column(visible=False) as oral_coach_content:
159
+ gr.Markdown("## Powered by Hugging Face")
160
+ gr.Markdown(img_html)
161
  with gr.Row():
162
  with gr.Column(scale=1):
163
  gr.Markdown("### Step 1: Choose a Question")
 
174
  submit_answer_btn = gr.Button("Submit Oral Response")
175
 
176
  gr.Markdown("### Step 5: Review your personalised feedback")
177
+ feedback_output = gr.Chatbot(label="Feedback", scale=4, height=700, show_label=True)
 
 
 
 
 
 
 
178
  audio_output = gr.Audio(type="numpy", label="Audio Playback", format="wav", autoplay="True")
179
 
180
+ submit_answer_btn.click(
181
+ predict,
182
+ inputs=[question_choice, strategy_choice, feedback_level, audio_input],
183
+ outputs=[feedback_output, audio_output]
184
+ )
 
 
 
 
 
 
 
 
 
 
185
 
186
  submit_info_btn.click(
187
  toggle_oral_coach_visibility,
 
189
  outputs=[info_output, oral_coach_content]
190
  )
191
 
 
192
  create_teachers_dashboard_tab()
193
 
194
  app.queue(max_size=20).launch(