Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,3 @@
|
|
1 |
-
import subprocess
|
2 |
-
|
3 |
-
# Install flash attention
|
4 |
-
subprocess.run(
|
5 |
-
"pip install flash-attn --no-build-isolation",
|
6 |
-
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
7 |
-
shell=True,
|
8 |
-
check=True # This will raise an exception if the command fails
|
9 |
-
)
|
10 |
-
|
11 |
-
# Rest of your app.py code
|
12 |
import gradio as gr
|
13 |
import asyncio
|
14 |
import os
|
@@ -16,7 +5,6 @@ import thinkingframes
|
|
16 |
import soundfile as sf
|
17 |
import numpy as np
|
18 |
import logging
|
19 |
-
from transformers import pipeline
|
20 |
from dotenv import load_dotenv
|
21 |
from policy import user_acceptance_policy
|
22 |
from styles import theme
|
@@ -39,21 +27,21 @@ engines = {default_lang: Model(default_lang)}
|
|
39 |
# For maintaining user session (to keep track of userID)
|
40 |
user_state = gr.State(value="")
|
41 |
|
42 |
-
@spaces.GPU(duration=120)
|
43 |
-
def transcribe(audio):
|
44 |
-
lang = "en"
|
45 |
-
model = engines[lang]
|
46 |
-
text = model.stt_file(audio)[0]
|
47 |
-
return text
|
48 |
-
|
49 |
# Load the Meta-Llama-3-8B model from Hugging Face
|
50 |
-
llm =
|
51 |
|
52 |
image_path = "picturePerformance.jpg"
|
53 |
img_html = get_image_html(image_path)
|
54 |
|
55 |
executor = ThreadPoolExecutor()
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
@spaces.GPU(duration=120)
|
58 |
def generate_feedback(user_id, question_choice, strategy_choice, message, feedback_level):
|
59 |
current_question_index = questions.index(question_choice)
|
@@ -67,7 +55,8 @@ def generate_feedback(user_id, question_choice, strategy_choice, message, feedba
|
|
67 |
"content": message
|
68 |
}]
|
69 |
|
70 |
-
|
|
|
71 |
|
72 |
questionNo = current_question_index + 1
|
73 |
add_submission(user_id, message, feedback, int(0), "", questionNo)
|
@@ -86,13 +75,13 @@ async def predict(question_choice, strategy_choice, feedback_level, audio):
|
|
86 |
current_audio_output = None
|
87 |
|
88 |
if audio is None:
|
89 |
-
yield [("Oral Coach
|
90 |
return
|
91 |
|
92 |
sample_rate, audio_data = audio
|
93 |
|
94 |
if audio_data is None or len(audio_data) == 0:
|
95 |
-
yield [("Oral Coach
|
96 |
return
|
97 |
|
98 |
audio_path = "audio.wav"
|
@@ -100,7 +89,7 @@ async def predict(question_choice, strategy_choice, feedback_level, audio):
|
|
100 |
raise ValueError("audio_data must be a numpy array")
|
101 |
sf.write(audio_path, audio_data, sample_rate)
|
102 |
|
103 |
-
chat_history = [("Oral Coach
|
104 |
yield chat_history, current_audio_output
|
105 |
|
106 |
try:
|
@@ -108,19 +97,19 @@ async def predict(question_choice, strategy_choice, feedback_level, audio):
|
|
108 |
student_response = await asyncio.wrap_future(transcription_future)
|
109 |
|
110 |
if not student_response.strip():
|
111 |
-
yield [("Oral Coach
|
112 |
return
|
113 |
|
114 |
chat_history.append(("Student", student_response))
|
115 |
yield chat_history, current_audio_output
|
116 |
|
117 |
-
chat_history.append(("Oral Coach
|
118 |
yield chat_history, current_audio_output
|
119 |
|
120 |
feedback_future = executor.submit(generate_feedback, int(user_state.value), question_choice, strategy_choice, student_response, feedback_level)
|
121 |
feedback = await asyncio.wrap_future(feedback_future)
|
122 |
|
123 |
-
chat_history.append(("Oral Coach
|
124 |
yield chat_history, current_audio_output
|
125 |
|
126 |
audio_future = executor.submit(generate_audio_feedback, feedback)
|
@@ -131,7 +120,7 @@ async def predict(question_choice, strategy_choice, feedback_level, audio):
|
|
131 |
|
132 |
except Exception as e:
|
133 |
logging.error(f"An error occurred: {str(e)}", exc_info=True)
|
134 |
-
yield [("Oral Coach
|
135 |
|
136 |
# Modify the toggle_oral_coach_visibility function to call add_user_privacy and store the returned user_id in user_state.value
|
137 |
def toggle_oral_coach_visibility(class_name, index_no, policy_checked):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import asyncio
|
3 |
import os
|
|
|
5 |
import soundfile as sf
|
6 |
import numpy as np
|
7 |
import logging
|
|
|
8 |
from dotenv import load_dotenv
|
9 |
from policy import user_acceptance_policy
|
10 |
from styles import theme
|
|
|
27 |
# For maintaining user session (to keep track of userID)
|
28 |
user_state = gr.State(value="")
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
# Load the Meta-Llama-3-8B model from Hugging Face
|
31 |
+
llm = gr.load("meta-llama/Meta-Llama-3-8B", src="models")
|
32 |
|
33 |
image_path = "picturePerformance.jpg"
|
34 |
img_html = get_image_html(image_path)
|
35 |
|
36 |
executor = ThreadPoolExecutor()
|
37 |
|
38 |
+
@spaces.GPU(duration=120)
|
39 |
+
def transcribe(audio):
|
40 |
+
lang = "en"
|
41 |
+
model = engines[lang]
|
42 |
+
text = model.stt_file(audio)[0]
|
43 |
+
return text
|
44 |
+
|
45 |
@spaces.GPU(duration=120)
|
46 |
def generate_feedback(user_id, question_choice, strategy_choice, message, feedback_level):
|
47 |
current_question_index = questions.index(question_choice)
|
|
|
55 |
"content": message
|
56 |
}]
|
57 |
|
58 |
+
# Use the loaded model for generating feedback
|
59 |
+
feedback = llm(conversation)[0]["generated_text"]
|
60 |
|
61 |
questionNo = current_question_index + 1
|
62 |
add_submission(user_id, message, feedback, int(0), "", questionNo)
|
|
|
75 |
current_audio_output = None
|
76 |
|
77 |
if audio is None:
|
78 |
+
yield [("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "No audio data received. Please try again.")], current_audio_output
|
79 |
return
|
80 |
|
81 |
sample_rate, audio_data = audio
|
82 |
|
83 |
if audio_data is None or len(audio_data) == 0:
|
84 |
+
yield [("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "No audio data received. Please try again.")], current_audio_output
|
85 |
return
|
86 |
|
87 |
audio_path = "audio.wav"
|
|
|
89 |
raise ValueError("audio_data must be a numpy array")
|
90 |
sf.write(audio_path, audio_data, sample_rate)
|
91 |
|
92 |
+
chat_history = [("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "Transcribing your audio, please listen to your oral response while waiting ...")]
|
93 |
yield chat_history, current_audio_output
|
94 |
|
95 |
try:
|
|
|
97 |
student_response = await asyncio.wrap_future(transcription_future)
|
98 |
|
99 |
if not student_response.strip():
|
100 |
+
yield [("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "Transcription failed. Please try again or seek assistance.")], current_audio_output
|
101 |
return
|
102 |
|
103 |
chat_history.append(("Student", student_response))
|
104 |
yield chat_history, current_audio_output
|
105 |
|
106 |
+
chat_history.append(("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "Transcription complete. Generating feedback. Please continue listening to your oral response while waiting ..."))
|
107 |
yield chat_history, current_audio_output
|
108 |
|
109 |
feedback_future = executor.submit(generate_feedback, int(user_state.value), question_choice, strategy_choice, student_response, feedback_level)
|
110 |
feedback = await asyncio.wrap_future(feedback_future)
|
111 |
|
112 |
+
chat_history.append(("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", feedback))
|
113 |
yield chat_history, current_audio_output
|
114 |
|
115 |
audio_future = executor.submit(generate_audio_feedback, feedback)
|
|
|
120 |
|
121 |
except Exception as e:
|
122 |
logging.error(f"An error occurred: {str(e)}", exc_info=True)
|
123 |
+
yield [("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "An error occurred. Please try again or seek assistance.")], current_audio_output
|
124 |
|
125 |
# Modify the toggle_oral_coach_visibility function to call add_user_privacy and store the returned user_id in user_state.value
|
126 |
def toggle_oral_coach_visibility(class_name, index_no, policy_checked):
|