File size: 8,332 Bytes
9ada6bf
 
 
b6846ae
37e6cfd
 
 
 
9ada6bf
 
 
 
 
 
bfda8f6
9ada6bf
bfda8f6
 
 
 
37e6cfd
bfda8f6
 
37e6cfd
 
9ada6bf
37e6cfd
9ada6bf
 
37e6cfd
bfda8f6
9ada6bf
 
 
b63d371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37e6cfd
 
9ada6bf
37e6cfd
9ada6bf
 
37e6cfd
bfda8f6
9ada6bf
 
 
 
 
 
 
 
 
37e6cfd
9ada6bf
b6846ae
 
 
9ada6bf
b6846ae
37e6cfd
 
 
 
 
 
 
 
 
 
 
 
2be8ad6
 
 
 
 
4e099a3
2be8ad6
 
 
 
37e6cfd
 
 
9ada6bf
 
 
4e099a3
 
 
 
 
 
 
 
 
 
 
 
9ada6bf
18ff80a
 
 
 
 
 
 
 
 
 
 
 
 
92a84ee
 
 
 
18ff80a
 
b8778bd
18ff80a
 
 
 
b8778bd
18ff80a
 
b8778bd
18ff80a
 
 
 
 
 
 
b8778bd
18ff80a
9ada6bf
 
 
 
 
 
 
 
 
b8778bd
18ff80a
 
 
 
b8778bd
18ff80a
 
 
 
b8778bd
92a84ee
 
 
 
 
 
 
18ff80a
92a84ee
18ff80a
b8778bd
18ff80a
b8778bd
 
 
 
18ff80a
b8778bd
 
 
9ada6bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import requests
import gradio as gr
from openai import OpenAI
import logging

# Configure logging
logging.basicConfig(level=logging.INFO)

# Fetch API keys from environment variables
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
PROXYCURL_API_KEY = os.getenv("PROXYCURL_API_KEY")
FIRECRAWL_API_KEY = os.getenv("FIRECRAWL_API_KEY")

# Function to fetch LinkedIn data using the Proxycurl API
def fetch_linkedin_data(linkedin_url):
    api_key = os.getenv("PROXYCURL_API_KEY")
    headers = {'Authorization': f'Bearer {api_key}'}
    api_endpoint = 'https://nubela.co/proxycurl/api/v2/linkedin'
    
    logging.info("Fetching LinkedIn data...")
    response = requests.get(api_endpoint,
                            params={'url': linkedin_url},
                            headers=headers,
                            timeout=10)  # Adding a timeout for safety
    if response.status_code == 200:
        logging.info("LinkedIn data fetched successfully.")
        return response.json()
    else:
        logging.error(f"Error fetching LinkedIn data: {response.text}")
        return {"error": f"Error fetching LinkedIn data: {response.text}"}

# Function to fetch company information using Firecrawl API
def fetch_company_info(company_url):
    api_key = os.getenv("FIRECRAWL_API_KEY")
    headers = {
        'Authorization': f'Bearer {api_key}',
        'Content-Type': 'application/json'
    }
    api_endpoint = 'https://api.firecrawl.dev/v1/crawl'
    
    data = {
        "url": company_url,
        "limit": 100,
        "scrapeOptions": {
            "formats": ["markdown", "html"]
        }
    }
    
    logging.info("Fetching company information...")
    response = requests.post(api_endpoint, json=data, headers=headers, timeout=15)  # Adding a timeout for safety
    if response.status_code == 200:
        logging.info("Company information fetched successfully.")
        return response.json()
    else:
        logging.error(f"Error fetching company information: {response.text}")
        return {"error": f"Error fetching company information: {response.text}"}

# Function to structure the email using the "Start with Why" model
def structure_email(user_data, linkedin_info, company_info):
    why = f"I am passionate about {company_info.get('mission', 'your mission')} because it aligns with my experience as {linkedin_info.get('current_role', 'a professional')}."
    how = f"My skills in {user_data['role']} match the requirements and goals of your organization."
    what = f"I can bring my experience in {linkedin_info.get('skills', 'relevant skills')} to help achieve {company_info.get('goal', 'your company goals')}."
    structured_input = f"{why}\n\n{how}\n\n{what}"
    return structured_input

# Function to generate email content using Nvidia Nemotron LLM (non-streaming for simplicity)
def generate_email_content(api_key, prompt):
    client = OpenAI(
        base_url="https://integrate.api.nvidia.com/v1",
        api_key=api_key
    )
    
    logging.info("Generating email content...")
    try:
        response = client.chat.completions.create(
            model="nvidia/llama-3.1-nemotron-70b-instruct",
            messages=[
                {"role": "user", "content": prompt}
            ],
            temperature=0.5,
            top_p=1,
            max_tokens=1024,
            stream=False  # Disable streaming for simplicity
        )
        
        # Access the response content correctly based on the Nvidia API structure
        if hasattr(response, 'choices') and len(response.choices) > 0:
            email_content = response.choices[0].message.content
            logging.info("Email content generated successfully.")
            logging.info(f"Generated Email Content: {email_content}")
            return email_content
        else:
            logging.error("Error: No choices found in the response.")
            return "Error generating email content: No valid choices."
    except Exception as e:
        logging.error(f"Error generating email content: {e}")
        return "Error generating email content."

# Function to validate the generated email for professional tone and completeness
def validate_email(email_content):
    logging.info("Validating email content...")
    logging.info(f"Email Content for Validation: {email_content}")

    # Adjust validation to check for structure rather than exact keywords
    if ("passionate" in email_content and
        "skills" in email_content and
        "experience" in email_content):
        logging.info("Email content validation passed.")
        return True
    else:
        logging.info("Email content validation failed.")
        return False

# Custom Agent class to simulate behavior similar to OpenAI's Swarm framework
class Agent:
    def __init__(self, name, instructions, user_data):
        self.name = name
        self.instructions = instructions
        self.user_data = user_data

    def act(self):
        if self.name == "Data Collection Agent":
            linkedin_info = fetch_linkedin_data(self.user_data['linkedin_url'])
            company_info = fetch_company_info(self.user_data['company_url'])
            return linkedin_info, company_info
        elif self.name == "Email Generation Agent":
            user_data = self.user_data['user_data']
            linkedin_info = self.user_data['linkedin_info']
            company_info = self.user_data['company_info']
            prompt = structure_email(user_data, linkedin_info, company_info)
            email_content = generate_email_content(OPENAI_API_KEY, prompt)
            return email_content

# Simulated Swarm class to manage agents
class Swarm:
    def __init__(self):
        self.agents = []

    def add_agent(self, agent):
        self.agents.append(agent)

    def run(self):
        for agent in self.agents:
            if agent.name == "Data Collection Agent":
                linkedin_info, company_info = agent.act()
                if "error" in linkedin_info or "error" in company_info:
                    return "Error fetching data. Please check the LinkedIn and company URLs."
                return linkedin_info, company_info

# Function that integrates the agents and manages iterations
def run_agent(name, email, phone, linkedin_url, company_url, role):
    user_data = {
        "name": name,
        "email": email,
        "phone": phone,
        "linkedin_url": linkedin_url,
        "company_url": company_url,
        "role": role
    }

    # Create a Swarm and add the Data Collection Agent
    email_swarm = Swarm()
    data_collection_agent = Agent("Data Collection Agent", "Collect user inputs and relevant data", user_data)
    email_swarm.add_agent(data_collection_agent)

    # Get data from the Data Collection Agent
    linkedin_info, company_info = email_swarm.run()
    if isinstance(linkedin_info, str):  # If an error message is returned
        return linkedin_info

    # Create a structured dictionary for the Email Generation Agent
    agent_data = {
        "user_data": user_data,
        "linkedin_info": linkedin_info,
        "company_info": company_info
    }

    # Pass the collected data to the Email Generation Agent
    email_agent = Agent("Email Generation Agent", "Generate the email content", agent_data)
    email_content = email_agent.act()

    # Validate and refine the email using a ReAct pattern with a maximum of 3 iterations
    for i in range(3):
        if validate_email(email_content):
            return email_content
        else:
            refined_prompt = f"Refine: {structure_email(user_data, linkedin_info, company_info)}"
            email_content = generate_email_content(OPENAI_API_KEY, refined_prompt)

    return "Unable to generate a valid email after 3 attempts."

# Set up the Gradio interface
final_interface = gr.Interface(
    fn=run_agent,
    inputs=[
        gr.Textbox(label="Name"),
        gr.Textbox(label="Email"),
        gr.Textbox(label="Phone Number"),
        gr.Textbox(label="LinkedIn Profile URL"),
        gr.Textbox(label="Company URL or Name"),
        gr.Textbox(label="Role Being Applied For")
    ],
    outputs="text",
    title="Email Writing AI Agent",
    description="Autonomously generate a professional email tailored to the job application."
)

if __name__ == "__main__":
    final_interface.launch()