shivamjadhav's picture
created Bug Priority model and hugging face deployment read project
7b41c88
raw
history blame
4.9 kB
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from datasets import Dataset
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, f1_score, classification_report
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
from pytorch_lightning.strategies import DDPStrategy
from transformers import AutoTokenizer, AutoModel, DataCollatorWithPadding, get_cosine_schedule_with_warmup
class DebertaClassifier(pl.LightningModule):
def __init__(self, num_labels=4, lr=2e-5, class_weights=None):
super().__init__()
self.save_hyperparameters()
self.model = AutoModel.from_pretrained("microsoft/deberta-v3-large")
self.dropout = nn.Dropout(0.3)
self.classifier = nn.Sequential(
nn.LayerNorm(self.model.config.hidden_size),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(self.model.config.hidden_size, num_labels)
)
if class_weights is not None:
weights = torch.tensor(class_weights, dtype=torch.float32)
self.loss_fn = nn.CrossEntropyLoss(weight=weights)
else:
self.loss_fn = nn.CrossEntropyLoss()
def forward(self, input_ids, attention_mask):
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)
cls_output = outputs.last_hidden_state[:, 0, :]
cls_output = self.dropout(cls_output)
return self.classifier(cls_output)
def training_step(self, batch, batch_idx):
input_ids, attention_mask, labels = batch["input_ids"], batch["attention_mask"], batch["labels"]
logits = self(input_ids, attention_mask)
loss = self.loss_fn(logits, labels)
preds = torch.argmax(logits, dim=1)
acc = accuracy_score(labels.cpu(), preds.cpu())
self.log("train_loss", loss, prog_bar=True)
self.log("train_acc", acc, prog_bar=True)
return loss
def validation_step(self, batch, batch_idx):
input_ids, attention_mask, labels = batch["input_ids"], batch["attention_mask"], batch["labels"]
logits = self(input_ids, attention_mask)
loss = self.loss_fn(logits, labels)
preds = torch.argmax(logits, dim=1)
acc = accuracy_score(labels.cpu(), preds.cpu())
f1 = f1_score(labels.cpu(), preds.cpu(), average='weighted')
self.log("val_loss", loss, prog_bar=True)
self.log("val_acc", acc, prog_bar=True)
self.log("val_f1", f1, prog_bar=True, sync_dist=True)
def configure_optimizers(self):
optimizer = torch.optim.AdamW(self.parameters(), lr=self.hparams.lr)
scheduler = get_cosine_schedule_with_warmup(
optimizer,
num_warmup_steps=100,
num_training_steps=self.trainer.estimated_stepping_batches
)
return {"optimizer": optimizer, "lr_scheduler": scheduler, "interval": "step"}
if __name__ == "__main__":
df = pd.read_csv("data_cleaned2.csv")
print(df.head())
class_counts = df["labels"].value_counts().sort_index().tolist()
class_weights = 1.0 / np.array(class_counts)
class_weights = class_weights / class_weights.sum()
train_df = df.sample(frac=0.8, random_state=42)
val_df = df.drop(train_df.index)
tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-v3-large")
def tokenize(batch):
return tokenizer(batch["text"], truncation=True)
train_dataset = Dataset.from_pandas(train_df).map(tokenize, batched=True)
val_dataset = Dataset.from_pandas(val_df).map(tokenize, batched=True)
train_dataset.set_format("torch", columns=["input_ids", "attention_mask", "labels"])
val_dataset.set_format("torch", columns=["input_ids", "attention_mask", "labels"])
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True, num_workers=8, collate_fn=data_collator)
val_loader = DataLoader(val_dataset, batch_size=16, num_workers=8, collate_fn=data_collator)
checkpoint_callback = ModelCheckpoint(
dirpath="checkpoints/",
filename="deberta3-{epoch:02d}-{val_f1:.2f}",
save_top_k=2,
monitor="val_f1",
mode="max",
save_weights_only=True,
every_n_epochs=1
)
early_stopping = EarlyStopping(
monitor="val_f1",
patience=3,
mode="max",
verbose=True,
)
trainer = pl.Trainer(
accelerator="gpu",
devices=2,
strategy=DDPStrategy(find_unused_parameters=False),
max_epochs=10,
precision=16,
log_every_n_steps=10,
callbacks=[checkpoint_callback, early_stopping],
)
model = DebertaClassifier(class_weights=class_weights)
trainer.fit(model, train_loader, val_loader)