File size: 4,901 Bytes
7b41c88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from datasets import Dataset
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, f1_score, classification_report

import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
from pytorch_lightning.strategies import DDPStrategy

from transformers import AutoTokenizer, AutoModel, DataCollatorWithPadding, get_cosine_schedule_with_warmup


class DebertaClassifier(pl.LightningModule):
    def __init__(self, num_labels=4, lr=2e-5, class_weights=None):
        super().__init__()
        self.save_hyperparameters()
        self.model = AutoModel.from_pretrained("microsoft/deberta-v3-large")
        self.dropout = nn.Dropout(0.3)
        self.classifier = nn.Sequential(
            nn.LayerNorm(self.model.config.hidden_size),
            nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(self.model.config.hidden_size, num_labels)
        )

        if class_weights is not None:
            weights = torch.tensor(class_weights, dtype=torch.float32)
            self.loss_fn = nn.CrossEntropyLoss(weight=weights)
        else:
            self.loss_fn = nn.CrossEntropyLoss()

    def forward(self, input_ids, attention_mask):
        outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)
        cls_output = outputs.last_hidden_state[:, 0, :]
        cls_output = self.dropout(cls_output)
        return self.classifier(cls_output)

    def training_step(self, batch, batch_idx):
        input_ids, attention_mask, labels = batch["input_ids"], batch["attention_mask"], batch["labels"]
        logits = self(input_ids, attention_mask)
        loss = self.loss_fn(logits, labels)
        preds = torch.argmax(logits, dim=1)
        acc = accuracy_score(labels.cpu(), preds.cpu())
        self.log("train_loss", loss, prog_bar=True)
        self.log("train_acc", acc, prog_bar=True)
        return loss

    def validation_step(self, batch, batch_idx):
        input_ids, attention_mask, labels = batch["input_ids"], batch["attention_mask"], batch["labels"]
        logits = self(input_ids, attention_mask)
        loss = self.loss_fn(logits, labels)
        preds = torch.argmax(logits, dim=1)
        acc = accuracy_score(labels.cpu(), preds.cpu())
        f1 = f1_score(labels.cpu(), preds.cpu(), average='weighted')
        self.log("val_loss", loss, prog_bar=True)
        self.log("val_acc", acc, prog_bar=True)
        self.log("val_f1", f1, prog_bar=True, sync_dist=True)

    def configure_optimizers(self):
        optimizer = torch.optim.AdamW(self.parameters(), lr=self.hparams.lr)
        scheduler = get_cosine_schedule_with_warmup(
            optimizer,
            num_warmup_steps=100,
            num_training_steps=self.trainer.estimated_stepping_batches
        )
        return {"optimizer": optimizer, "lr_scheduler": scheduler, "interval": "step"}


if __name__ == "__main__":
    df = pd.read_csv("data_cleaned2.csv")
    print(df.head())
    class_counts = df["labels"].value_counts().sort_index().tolist()
    class_weights = 1.0 / np.array(class_counts)
    class_weights = class_weights / class_weights.sum()

    train_df = df.sample(frac=0.8, random_state=42)
    val_df = df.drop(train_df.index)

    tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-v3-large")

    def tokenize(batch):
        return tokenizer(batch["text"], truncation=True)

    train_dataset = Dataset.from_pandas(train_df).map(tokenize, batched=True)
    val_dataset = Dataset.from_pandas(val_df).map(tokenize, batched=True)

    train_dataset.set_format("torch", columns=["input_ids", "attention_mask", "labels"])
    val_dataset.set_format("torch", columns=["input_ids", "attention_mask", "labels"])

    data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
    train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True, num_workers=8, collate_fn=data_collator)
    val_loader = DataLoader(val_dataset, batch_size=16, num_workers=8, collate_fn=data_collator)

    checkpoint_callback = ModelCheckpoint(
        dirpath="checkpoints/",
        filename="deberta3-{epoch:02d}-{val_f1:.2f}",
        save_top_k=2,
        monitor="val_f1",
        mode="max",
        save_weights_only=True,
        every_n_epochs=1
    )

    early_stopping = EarlyStopping(
        monitor="val_f1",
        patience=3,
        mode="max",
        verbose=True,
    )

    trainer = pl.Trainer(
        accelerator="gpu",
        devices=2,
        strategy=DDPStrategy(find_unused_parameters=False),
        max_epochs=10,
        precision=16,
        log_every_n_steps=10,
        callbacks=[checkpoint_callback, early_stopping],
    )

    model = DebertaClassifier(class_weights=class_weights)
    trainer.fit(model, train_loader, val_loader)