import pandas as pd import numpy as np import torch import torch.nn as nn from torch.utils.data import DataLoader from datasets import Dataset from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, f1_score, classification_report import pytorch_lightning as pl from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping from pytorch_lightning.strategies import DDPStrategy from transformers import AutoTokenizer, AutoModel, DataCollatorWithPadding, get_cosine_schedule_with_warmup class DebertaClassifier(pl.LightningModule): def __init__(self, num_labels=4, lr=2e-5, class_weights=None): super().__init__() self.save_hyperparameters() self.model = AutoModel.from_pretrained("microsoft/deberta-v3-large") self.dropout = nn.Dropout(0.3) self.classifier = nn.Sequential( nn.LayerNorm(self.model.config.hidden_size), nn.ReLU(), nn.Dropout(0.2), nn.Linear(self.model.config.hidden_size, num_labels) ) if class_weights is not None: weights = torch.tensor(class_weights, dtype=torch.float32) self.loss_fn = nn.CrossEntropyLoss(weight=weights) else: self.loss_fn = nn.CrossEntropyLoss() def forward(self, input_ids, attention_mask): outputs = self.model(input_ids=input_ids, attention_mask=attention_mask) cls_output = outputs.last_hidden_state[:, 0, :] cls_output = self.dropout(cls_output) return self.classifier(cls_output) def training_step(self, batch, batch_idx): input_ids, attention_mask, labels = batch["input_ids"], batch["attention_mask"], batch["labels"] logits = self(input_ids, attention_mask) loss = self.loss_fn(logits, labels) preds = torch.argmax(logits, dim=1) acc = accuracy_score(labels.cpu(), preds.cpu()) self.log("train_loss", loss, prog_bar=True) self.log("train_acc", acc, prog_bar=True) return loss def validation_step(self, batch, batch_idx): input_ids, attention_mask, labels = batch["input_ids"], batch["attention_mask"], batch["labels"] logits = self(input_ids, attention_mask) loss = self.loss_fn(logits, labels) preds = torch.argmax(logits, dim=1) acc = accuracy_score(labels.cpu(), preds.cpu()) f1 = f1_score(labels.cpu(), preds.cpu(), average='weighted') self.log("val_loss", loss, prog_bar=True) self.log("val_acc", acc, prog_bar=True) self.log("val_f1", f1, prog_bar=True, sync_dist=True) def configure_optimizers(self): optimizer = torch.optim.AdamW(self.parameters(), lr=self.hparams.lr) scheduler = get_cosine_schedule_with_warmup( optimizer, num_warmup_steps=100, num_training_steps=self.trainer.estimated_stepping_batches ) return {"optimizer": optimizer, "lr_scheduler": scheduler, "interval": "step"} if __name__ == "__main__": df = pd.read_csv("data_cleaned2.csv") print(df.head()) class_counts = df["labels"].value_counts().sort_index().tolist() class_weights = 1.0 / np.array(class_counts) class_weights = class_weights / class_weights.sum() train_df = df.sample(frac=0.8, random_state=42) val_df = df.drop(train_df.index) tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-v3-large") def tokenize(batch): return tokenizer(batch["text"], truncation=True) train_dataset = Dataset.from_pandas(train_df).map(tokenize, batched=True) val_dataset = Dataset.from_pandas(val_df).map(tokenize, batched=True) train_dataset.set_format("torch", columns=["input_ids", "attention_mask", "labels"]) val_dataset.set_format("torch", columns=["input_ids", "attention_mask", "labels"]) data_collator = DataCollatorWithPadding(tokenizer=tokenizer) train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True, num_workers=8, collate_fn=data_collator) val_loader = DataLoader(val_dataset, batch_size=16, num_workers=8, collate_fn=data_collator) checkpoint_callback = ModelCheckpoint( dirpath="checkpoints/", filename="deberta3-{epoch:02d}-{val_f1:.2f}", save_top_k=2, monitor="val_f1", mode="max", save_weights_only=True, every_n_epochs=1 ) early_stopping = EarlyStopping( monitor="val_f1", patience=3, mode="max", verbose=True, ) trainer = pl.Trainer( accelerator="gpu", devices=2, strategy=DDPStrategy(find_unused_parameters=False), max_epochs=10, precision=16, log_every_n_steps=10, callbacks=[checkpoint_callback, early_stopping], ) model = DebertaClassifier(class_weights=class_weights) trainer.fit(model, train_loader, val_loader)