Spaces:
Runtime error
Runtime error
File size: 20,622 Bytes
515f781 8016317 515f781 8016317 515f781 127e696 515f781 127e696 515f781 8016317 127e696 515f781 127e696 515f781 127e696 515f781 127e696 515f781 127e696 515f781 127e696 515f781 8016317 515f781 8016317 515f781 8016317 515f781 8016317 515f781 8016317 515f781 8016317 515f781 127e696 515f781 127e696 515f781 127e696 515f781 127e696 515f781 127e696 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import numpy.random as npr
import copy
from functools import partial
from contextlib import contextmanager
from lib.model_zoo.common.get_model import get_model, register
from lib.log_service import print_log
from .openaimodel import \
TimestepEmbedSequential, conv_nd, zero_module, \
ResBlock, AttentionBlock, SpatialTransformer, \
Downsample, timestep_embedding
@register('controlnet')
class ControlNet(nn.Module):
def __init__(
self,
image_size,
in_channels,
model_channels,
hint_channels,
num_res_blocks,
attention_resolutions,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
use_checkpoint=False,
use_fp16=False,
num_heads=-1,
num_head_channels=-1,
num_heads_upsample=-1,
use_scale_shift_norm=False,
resblock_updown=False,
use_new_attention_order=False,
use_spatial_transformer=False, # custom transformer support
transformer_depth=1, # custom transformer support
context_dim=None, # custom transformer support
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
legacy=True,
disable_self_attentions=None,
num_attention_blocks=None,
disable_middle_self_attn=False,
use_linear_in_transformer=False,
):
super().__init__()
if use_spatial_transformer:
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
if context_dim is not None:
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
from omegaconf.listconfig import ListConfig
if type(context_dim) == ListConfig:
context_dim = list(context_dim)
if num_heads_upsample == -1:
num_heads_upsample = num_heads
if num_heads == -1:
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
if num_head_channels == -1:
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
self.dims = dims
self.image_size = image_size
self.in_channels = in_channels
self.model_channels = model_channels
if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else:
if len(num_res_blocks) != len(channel_mult):
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
"as a list/tuple (per-level) with the same length as channel_mult")
self.num_res_blocks = num_res_blocks
if disable_self_attentions is not None:
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
assert len(disable_self_attentions) == len(channel_mult)
if num_attention_blocks is not None:
assert len(num_attention_blocks) == len(self.num_res_blocks)
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
f"attention will still not be set.")
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.use_checkpoint = use_checkpoint
self.dtype = torch.float16 if use_fp16 else torch.float32
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.num_heads_upsample = num_heads_upsample
self.predict_codebook_ids = n_embed is not None
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
nn.Linear(model_channels, time_embed_dim),
nn.SiLU(),
nn.Linear(time_embed_dim, time_embed_dim),
)
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(
conv_nd(dims, in_channels, model_channels, 3, padding=1)
)
]
)
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])
self.input_hint_block = TimestepEmbedSequential(
conv_nd(dims, hint_channels, 16, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 16, 16, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 16, 32, 3, padding=1, stride=2),
nn.SiLU(),
conv_nd(dims, 32, 32, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 32, 96, 3, padding=1, stride=2),
nn.SiLU(),
conv_nd(dims, 96, 96, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 96, 256, 3, padding=1, stride=2),
nn.SiLU(),
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
)
self._feature_size = model_channels
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for nr in range(self.num_res_blocks[level]):
layers = [
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
# num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
if disable_self_attentions is not None:
disabled_sa = disable_self_attentions[level]
else:
disabled_sa = False
if (num_attention_blocks is None) or nr < num_attention_blocks[level]:
layers.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
self.zero_convs.append(self.make_zero_conv(ch))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
)
if resblock_updown
else Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch
)
)
)
ch = out_ch
input_block_chans.append(ch)
self.zero_convs.append(self.make_zero_conv(ch))
ds *= 2
self._feature_size += ch
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
# num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
self.middle_block = TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
),
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
)
self.middle_block_out = self.make_zero_conv(ch)
self._feature_size += ch
def make_zero_conv(self, channels):
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
def forward(self, x, hint, timesteps, context, **kwargs):
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
t_emb = t_emb.to(x.dtype)
emb = self.time_embed(t_emb)
guided_hint = self.input_hint_block(hint, emb, context)
outs = []
h = x
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
if guided_hint is not None:
h = module(h, emb, context)
h += guided_hint
guided_hint = None
else:
h = module(h, emb, context)
outs.append(zero_conv(h, emb, context))
h = self.middle_block(h, emb, context)
outs.append(self.middle_block_out(h, emb, context))
return outs
def get_device(self):
return self.time_embed[0].weight.device
def get_dtype(self):
return self.time_embed[0].weight.dtype
def preprocess(self, x, type='canny', **kwargs):
import torchvision.transforms as tvtrans
if isinstance(x, str):
import PIL.Image
device, dtype = self.get_device(), self.get_dtype()
x_list = [PIL.Image.open(x)]
elif isinstance(x, torch.Tensor):
x_list = [tvtrans.ToPILImage()(xi) for xi in x]
device, dtype = x.device, x.dtype
else:
assert False
if type == 'none' or type is None:
return None
elif type in ['input']:
y_torch = torch.stack([tvtrans.ToTensor()(xi) for xi in x_list])
y_torch = y_torch.to(device).to(torch.float32)
return y_torch
elif type in ['canny']:
low_threshold = kwargs.pop('low_threshold', 100)
high_threshold = kwargs.pop('high_threshold', 200)
from .controlnet_annotator.canny import apply_canny
y_list = [apply_canny(np.array(xi), low_threshold, high_threshold) for xi in x_list]
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list])
y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB
y_torch = y_torch.to(device).to(torch.float32)
return y_torch
elif type == 'depth':
from .controlnet_annotator.midas import apply_midas, unload_midas_model
y_list, _ = zip(*[apply_midas(input_image=np.array(xi), a=np.pi*2.0, device=device) for xi in x_list])
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list])
y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB
y_torch = y_torch.to(device).to(torch.float32)
unload_midas_model()
return y_torch
elif type in ['hed']:
from .controlnet_annotator.hed import apply_hed, unload_hed_model
y_list = [apply_hed(np.array(xi), device=device) for xi in x_list]
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list])
y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB
y_torch = y_torch.to(device).to(torch.float32)
from .controlnet_annotator.midas import model as model_midas
unload_hed_model()
return y_torch
elif type in ['mlsd', 'mlsd_v11p']:
thr_v = kwargs.pop('thr_v', 0.1)
thr_d = kwargs.pop('thr_d', 0.1)
from .controlnet_annotator.mlsd import apply_mlsd, unload_mlsd_model
y_list = [apply_mlsd(np.array(xi), thr_v=thr_v, thr_d=thr_d, device=device) for xi in x_list]
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list])
y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB
y_torch = y_torch.to(device).to(torch.float32)
unload_mlsd_model()
return y_torch
elif type == 'normal':
bg_th = kwargs.pop('bg_th', 0.4)
from .controlnet_annotator.midas import apply_midas, unload_midas_model
_, y_list = zip(*[apply_midas(input_image=np.array(xi), a=np.pi*2.0, bg_th=bg_th, device=device) for xi in x_list])
y_torch = torch.stack([tvtrans.ToTensor()(yi.copy()) for yi in y_list])
unload_midas_model()
return y_torch
elif type in ['openpose']:
from .controlnet_annotator.openpose import OpenposeModel
from functools import partial
wrapper = OpenposeModel()
apply_openpose = partial(
wrapper.run_model, include_body=True, include_hand=False, include_face=False,
json_pose_callback=None, device=device)
y_list = [apply_openpose(np.array(xi)) for xi in x_list]
y_torch = torch.stack([tvtrans.ToTensor()(yi.copy()) for yi in y_list])
y_torch = y_torch.to(device).to(torch.float32)
wrapper.unload()
return y_torch
elif type in ['openpose_withface']:
from .controlnet_annotator.openpose import OpenposeModel
from functools import partial
wrapper = OpenposeModel()
apply_openpose = partial(
wrapper.run_model, include_body=True, include_hand=False, include_face=True,
json_pose_callback=None, device=device)
y_list = [apply_openpose(np.array(xi)) for xi in x_list]
y_torch = torch.stack([tvtrans.ToTensor()(yi.copy()) for yi in y_list])
y_torch = y_torch.to(device).to(torch.float32)
wrapper.unload()
return y_torch
elif type in ['openpose_withfacehand']:
from .controlnet_annotator.openpose import OpenposeModel
from functools import partial
wrapper = OpenposeModel()
apply_openpose = partial(
wrapper.run_model, include_body=True, include_hand=True, include_face=True,
json_pose_callback=None, device=device)
y_list = [apply_openpose(np.array(xi)) for xi in x_list]
y_torch = torch.stack([tvtrans.ToTensor()(yi.copy()) for yi in y_list])
y_torch = y_torch.to(device).to(torch.float32)
wrapper.unload()
return y_torch
elif type == 'scribble':
method = kwargs.pop('method', 'pidinet')
import cv2
def nms(x, t, s):
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
y = np.zeros_like(x)
for f in [f1, f2, f3, f4]:
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
z = np.zeros_like(y, dtype=np.uint8)
z[y > t] = 255
return z
def make_scribble(result):
result = nms(result, 127, 3.0)
result = cv2.GaussianBlur(result, (0, 0), 3.0)
result[result > 4] = 255
result[result < 255] = 0
return result
if method == 'hed':
from .controlnet_annotator.hed import apply_hed, unload_hed_model
y_list = [apply_hed(np.array(xi), device=device) for xi in x_list]
y_list = [make_scribble(yi) for yi in y_list]
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list])
y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB
y_torch = y_torch.to(device).to(torch.float32)
unload_hed_model()
return y_torch
elif method == 'pidinet':
from .controlnet_annotator.pidinet import apply_pidinet, unload_pid_model
y_list = [apply_pidinet(np.array(xi), device=device) for xi in x_list]
y_list = [make_scribble(yi) for yi in y_list]
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list])
y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB
y_torch = y_torch.to(device).to(torch.float32)
unload_pid_model()
return y_torch
elif method == 'xdog':
threshold = kwargs.pop('threshold', 32)
def apply_scribble_xdog(img):
g1 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 0.5)
g2 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 5.0)
dog = (255 - np.min(g2 - g1, axis=2)).clip(0, 255).astype(np.uint8)
result = np.zeros_like(img, dtype=np.uint8)
result[2 * (255 - dog) > threshold] = 255
return result
y_list = [apply_scribble_xdog(np.array(xi), device=device) for xi in x_list]
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list])
y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB
y_torch = y_torch.to(device).to(torch.float32)
return y_torch
else:
raise ValueError
elif type == 'seg':
assert False, "This part is broken"
# method = kwargs.pop('method', 'ufade20k')
# if method == 'ufade20k':
# from .controlnet_annotator.uniformer import apply_uniformer
# y_list = [apply_uniformer(np.array(xi), palette='ade20k', device=device) for xi in x_list]
# y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list])
# y_torch = y_torch.to(device).to(torch.float32)
# return y_torch
# else:
# raise ValueError
|