Spaces:
Runtime error
Runtime error
try fix the preprocess OOM issue
Browse files- .gitignore +17 -0
- app.py +5 -5
- lib/__pycache__/__init__.cpython-310.pyc +0 -0
- lib/__pycache__/cfg_helper.cpython-310.pyc +0 -0
- lib/__pycache__/cfg_holder.cpython-310.pyc +0 -0
- lib/__pycache__/log_service.cpython-310.pyc +0 -0
- lib/__pycache__/sync.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/__init__.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/attention.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/autokl.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/autokl_modules.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/autokl_utils.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/controlnet.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/ddim.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/diffusion_utils.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/distributions.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/ema.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/openaimodel.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/pfd.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/seecoder.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/seecoder_utils.cpython-310.pyc +0 -0
- lib/model_zoo/__pycache__/swin.cpython-310.pyc +0 -0
- lib/model_zoo/common/__pycache__/get_model.cpython-310.pyc +0 -0
- lib/model_zoo/common/__pycache__/get_optimizer.cpython-310.pyc +0 -0
- lib/model_zoo/common/__pycache__/get_scheduler.cpython-310.pyc +0 -0
- lib/model_zoo/common/__pycache__/utils.cpython-310.pyc +0 -0
- lib/model_zoo/controlnet.py +9 -9
- lib/model_zoo/controlnet_annotator/midas/__init__.py +1 -2
- lib/model_zoo/controlnet_annotator/openpose/__init__.py +23 -6
.gitignore
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__
|
| 2 |
+
.vscode/
|
| 3 |
+
data/
|
| 4 |
+
data
|
| 5 |
+
log/
|
| 6 |
+
log
|
| 7 |
+
pretrained/
|
| 8 |
+
pretrained
|
| 9 |
+
assets/nosync/
|
| 10 |
+
assets/demo/temp/temp_*
|
| 11 |
+
*.out
|
| 12 |
+
gradio_cached_examples/
|
| 13 |
+
src/*/build
|
| 14 |
+
src/*/dist
|
| 15 |
+
src/*/*.egg-info/
|
| 16 |
+
extensions/
|
| 17 |
+
extensions
|
app.py
CHANGED
|
@@ -29,13 +29,13 @@ n_sample_image = 1
|
|
| 29 |
# ['canny_v11p' , ('canny' , 'pretrained/controlnet/control_v11p_sd15_canny_slimmed.safetensors')],
|
| 30 |
# ['depth' , ('depth' , 'pretrained/controlnet/control_sd15_depth_slimmed.safetensors')],
|
| 31 |
# ['hed' , ('hed' , 'pretrained/controlnet/control_sd15_hed_slimmed.safetensors')],
|
|
|
|
| 32 |
# ['mlsd' , ('mlsd' , 'pretrained/controlnet/control_sd15_mlsd_slimmed.safetensors')],
|
| 33 |
-
# ['mlsd_v11p' , ('mlsd' , 'pretrained/controlnet/control_v11p_sd15_mlsd_slimmed.safetensors')],
|
| 34 |
-
# ['normal' , ('normal' , 'pretrained/controlnet/control_sd15_normal_slimmed.safetensors')],
|
| 35 |
# ['openpose' , ('openpose', 'pretrained/controlnet/control_sd15_openpose_slimmed.safetensors')],
|
| 36 |
# ['openpose_v11p' , ('openpose', 'pretrained/controlnet/control_v11p_sd15_openpose_slimmed.safetensors')],
|
| 37 |
# ['scribble' , ('scribble', 'pretrained/controlnet/control_sd15_scribble_slimmed.safetensors')],
|
| 38 |
-
# ['softedge_v11p' , ('scribble', 'pretrained/controlnet/control_v11p_sd15_softedge_slimmed.safetensors')],
|
| 39 |
# ['seg' , ('none' , 'pretrained/controlnet/control_sd15_seg_slimmed.safetensors')],
|
| 40 |
# ['lineart_v11p' , ('none' , 'pretrained/controlnet/control_v11p_sd15_lineart_slimmed.safetensors')],
|
| 41 |
# ['lineart_anime_v11p', ('none' , 'pretrained/controlnet/control_v11p_sd15s2_lineart_anime_slimmed.safetensors')],
|
|
@@ -45,7 +45,7 @@ controlnet_path = OrderedDict([
|
|
| 45 |
['canny' , ('canny' , hf_hub_download('shi-labs/prompt-free-diffusion', 'pretrained/controlnet/control_sd15_canny_slimmed.safetensors'))],
|
| 46 |
# ['canny_v11p' , ('canny' , hf_hub_download('shi-labs/prompt-free-diffusion', 'pretrained/controlnet/control_v11p_sd15_canny_slimmed.safetensors'))],
|
| 47 |
['depth' , ('depth' , hf_hub_download('shi-labs/prompt-free-diffusion', 'pretrained/controlnet/control_sd15_depth_slimmed.safetensors'))],
|
| 48 |
-
|
| 49 |
['mlsd' , ('mlsd' , hf_hub_download('shi-labs/prompt-free-diffusion', 'pretrained/controlnet/control_sd15_mlsd_slimmed.safetensors'))],
|
| 50 |
# ['mlsd_v11p' , ('mlsd' , hf_hub_download('shi-labs/prompt-free-diffusion', 'pretrained/controlnet/control_v11p_sd15_mlsd_slimmed.safetensors'))],
|
| 51 |
# ['normal' , ('normal' , hf_hub_download('shi-labs/prompt-free-diffusion', 'pretrained/controlnet/control_sd15_normal_slimmed.safetensors'))],
|
|
@@ -61,7 +61,7 @@ controlnet_path = OrderedDict([
|
|
| 61 |
preprocess_method = [
|
| 62 |
'canny' ,
|
| 63 |
'depth' ,
|
| 64 |
-
|
| 65 |
'mlsd' ,
|
| 66 |
# 'normal' ,
|
| 67 |
'openpose' ,
|
|
|
|
| 29 |
# ['canny_v11p' , ('canny' , 'pretrained/controlnet/control_v11p_sd15_canny_slimmed.safetensors')],
|
| 30 |
# ['depth' , ('depth' , 'pretrained/controlnet/control_sd15_depth_slimmed.safetensors')],
|
| 31 |
# ['hed' , ('hed' , 'pretrained/controlnet/control_sd15_hed_slimmed.safetensors')],
|
| 32 |
+
# ['softedge_v11p' , ('hed' , 'pretrained/controlnet/control_v11p_sd15_softedge_slimmed.safetensors')],
|
| 33 |
# ['mlsd' , ('mlsd' , 'pretrained/controlnet/control_sd15_mlsd_slimmed.safetensors')],
|
| 34 |
+
# # ['mlsd_v11p' , ('mlsd' , 'pretrained/controlnet/control_v11p_sd15_mlsd_slimmed.safetensors')],
|
| 35 |
+
# # ['normal' , ('normal' , 'pretrained/controlnet/control_sd15_normal_slimmed.safetensors')],
|
| 36 |
# ['openpose' , ('openpose', 'pretrained/controlnet/control_sd15_openpose_slimmed.safetensors')],
|
| 37 |
# ['openpose_v11p' , ('openpose', 'pretrained/controlnet/control_v11p_sd15_openpose_slimmed.safetensors')],
|
| 38 |
# ['scribble' , ('scribble', 'pretrained/controlnet/control_sd15_scribble_slimmed.safetensors')],
|
|
|
|
| 39 |
# ['seg' , ('none' , 'pretrained/controlnet/control_sd15_seg_slimmed.safetensors')],
|
| 40 |
# ['lineart_v11p' , ('none' , 'pretrained/controlnet/control_v11p_sd15_lineart_slimmed.safetensors')],
|
| 41 |
# ['lineart_anime_v11p', ('none' , 'pretrained/controlnet/control_v11p_sd15s2_lineart_anime_slimmed.safetensors')],
|
|
|
|
| 45 |
['canny' , ('canny' , hf_hub_download('shi-labs/prompt-free-diffusion', 'pretrained/controlnet/control_sd15_canny_slimmed.safetensors'))],
|
| 46 |
# ['canny_v11p' , ('canny' , hf_hub_download('shi-labs/prompt-free-diffusion', 'pretrained/controlnet/control_v11p_sd15_canny_slimmed.safetensors'))],
|
| 47 |
['depth' , ('depth' , hf_hub_download('shi-labs/prompt-free-diffusion', 'pretrained/controlnet/control_sd15_depth_slimmed.safetensors'))],
|
| 48 |
+
['hed' , ('hed' , hf_hub_download('shi-labs/prompt-free-diffusion', 'pretrained/controlnet/control_sd15_hed_slimmed.safetensors'))],
|
| 49 |
['mlsd' , ('mlsd' , hf_hub_download('shi-labs/prompt-free-diffusion', 'pretrained/controlnet/control_sd15_mlsd_slimmed.safetensors'))],
|
| 50 |
# ['mlsd_v11p' , ('mlsd' , hf_hub_download('shi-labs/prompt-free-diffusion', 'pretrained/controlnet/control_v11p_sd15_mlsd_slimmed.safetensors'))],
|
| 51 |
# ['normal' , ('normal' , hf_hub_download('shi-labs/prompt-free-diffusion', 'pretrained/controlnet/control_sd15_normal_slimmed.safetensors'))],
|
|
|
|
| 61 |
preprocess_method = [
|
| 62 |
'canny' ,
|
| 63 |
'depth' ,
|
| 64 |
+
'hed' ,
|
| 65 |
'mlsd' ,
|
| 66 |
# 'normal' ,
|
| 67 |
'openpose' ,
|
lib/__pycache__/__init__.cpython-310.pyc
DELETED
|
Binary file (150 Bytes)
|
|
|
lib/__pycache__/cfg_helper.cpython-310.pyc
DELETED
|
Binary file (13.2 kB)
|
|
|
lib/__pycache__/cfg_holder.cpython-310.pyc
DELETED
|
Binary file (1.22 kB)
|
|
|
lib/__pycache__/log_service.cpython-310.pyc
DELETED
|
Binary file (5.01 kB)
|
|
|
lib/__pycache__/sync.cpython-310.pyc
DELETED
|
Binary file (7.51 kB)
|
|
|
lib/model_zoo/__pycache__/__init__.cpython-310.pyc
DELETED
|
Binary file (371 Bytes)
|
|
|
lib/model_zoo/__pycache__/attention.cpython-310.pyc
DELETED
|
Binary file (15.8 kB)
|
|
|
lib/model_zoo/__pycache__/autokl.cpython-310.pyc
DELETED
|
Binary file (6.08 kB)
|
|
|
lib/model_zoo/__pycache__/autokl_modules.cpython-310.pyc
DELETED
|
Binary file (20.3 kB)
|
|
|
lib/model_zoo/__pycache__/autokl_utils.cpython-310.pyc
DELETED
|
Binary file (13 kB)
|
|
|
lib/model_zoo/__pycache__/controlnet.cpython-310.pyc
DELETED
|
Binary file (13.1 kB)
|
|
|
lib/model_zoo/__pycache__/ddim.cpython-310.pyc
DELETED
|
Binary file (7.89 kB)
|
|
|
lib/model_zoo/__pycache__/diffusion_utils.cpython-310.pyc
DELETED
|
Binary file (9.53 kB)
|
|
|
lib/model_zoo/__pycache__/distributions.cpython-310.pyc
DELETED
|
Binary file (3.76 kB)
|
|
|
lib/model_zoo/__pycache__/ema.cpython-310.pyc
DELETED
|
Binary file (3.01 kB)
|
|
|
lib/model_zoo/__pycache__/openaimodel.cpython-310.pyc
DELETED
|
Binary file (51.1 kB)
|
|
|
lib/model_zoo/__pycache__/pfd.cpython-310.pyc
DELETED
|
Binary file (15.9 kB)
|
|
|
lib/model_zoo/__pycache__/seecoder.cpython-310.pyc
DELETED
|
Binary file (16.6 kB)
|
|
|
lib/model_zoo/__pycache__/seecoder_utils.cpython-310.pyc
DELETED
|
Binary file (4.7 kB)
|
|
|
lib/model_zoo/__pycache__/swin.cpython-310.pyc
DELETED
|
Binary file (21.2 kB)
|
|
|
lib/model_zoo/common/__pycache__/get_model.cpython-310.pyc
DELETED
|
Binary file (3.32 kB)
|
|
|
lib/model_zoo/common/__pycache__/get_optimizer.cpython-310.pyc
DELETED
|
Binary file (1.95 kB)
|
|
|
lib/model_zoo/common/__pycache__/get_scheduler.cpython-310.pyc
DELETED
|
Binary file (9.44 kB)
|
|
|
lib/model_zoo/common/__pycache__/utils.cpython-310.pyc
DELETED
|
Binary file (9.72 kB)
|
|
|
lib/model_zoo/controlnet.py
CHANGED
|
@@ -296,12 +296,12 @@ class ControlNet(nn.Module):
|
|
| 296 |
if type == 'none' or type is None:
|
| 297 |
return None
|
| 298 |
|
| 299 |
-
elif type in ['input'
|
| 300 |
y_torch = torch.stack([tvtrans.ToTensor()(xi) for xi in x_list])
|
| 301 |
y_torch = y_torch.to(device).to(torch.float32)
|
| 302 |
return y_torch
|
| 303 |
|
| 304 |
-
elif type in ['canny'
|
| 305 |
low_threshold = kwargs.pop('low_threshold', 100)
|
| 306 |
high_threshold = kwargs.pop('high_threshold', 200)
|
| 307 |
from .controlnet_annotator.canny import apply_canny
|
|
@@ -320,7 +320,7 @@ class ControlNet(nn.Module):
|
|
| 320 |
unload_midas_model()
|
| 321 |
return y_torch
|
| 322 |
|
| 323 |
-
elif type in ['hed'
|
| 324 |
from .controlnet_annotator.hed import apply_hed, unload_hed_model
|
| 325 |
y_list = [apply_hed(np.array(xi), device=device) for xi in x_list]
|
| 326 |
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list])
|
|
@@ -349,7 +349,7 @@ class ControlNet(nn.Module):
|
|
| 349 |
unload_midas_model()
|
| 350 |
return y_torch
|
| 351 |
|
| 352 |
-
elif type in ['openpose'
|
| 353 |
from .controlnet_annotator.openpose import OpenposeModel
|
| 354 |
from functools import partial
|
| 355 |
wrapper = OpenposeModel()
|
|
@@ -359,10 +359,10 @@ class ControlNet(nn.Module):
|
|
| 359 |
y_list = [apply_openpose(np.array(xi)) for xi in x_list]
|
| 360 |
y_torch = torch.stack([tvtrans.ToTensor()(yi.copy()) for yi in y_list])
|
| 361 |
y_torch = y_torch.to(device).to(torch.float32)
|
| 362 |
-
|
| 363 |
return y_torch
|
| 364 |
|
| 365 |
-
elif type in ['openpose_withface'
|
| 366 |
from .controlnet_annotator.openpose import OpenposeModel
|
| 367 |
from functools import partial
|
| 368 |
wrapper = OpenposeModel()
|
|
@@ -372,10 +372,10 @@ class ControlNet(nn.Module):
|
|
| 372 |
y_list = [apply_openpose(np.array(xi)) for xi in x_list]
|
| 373 |
y_torch = torch.stack([tvtrans.ToTensor()(yi.copy()) for yi in y_list])
|
| 374 |
y_torch = y_torch.to(device).to(torch.float32)
|
| 375 |
-
|
| 376 |
return y_torch
|
| 377 |
|
| 378 |
-
elif type in ['openpose_withfacehand'
|
| 379 |
from .controlnet_annotator.openpose import OpenposeModel
|
| 380 |
from functools import partial
|
| 381 |
wrapper = OpenposeModel()
|
|
@@ -385,7 +385,7 @@ class ControlNet(nn.Module):
|
|
| 385 |
y_list = [apply_openpose(np.array(xi)) for xi in x_list]
|
| 386 |
y_torch = torch.stack([tvtrans.ToTensor()(yi.copy()) for yi in y_list])
|
| 387 |
y_torch = y_torch.to(device).to(torch.float32)
|
| 388 |
-
|
| 389 |
return y_torch
|
| 390 |
|
| 391 |
elif type == 'scribble':
|
|
|
|
| 296 |
if type == 'none' or type is None:
|
| 297 |
return None
|
| 298 |
|
| 299 |
+
elif type in ['input']:
|
| 300 |
y_torch = torch.stack([tvtrans.ToTensor()(xi) for xi in x_list])
|
| 301 |
y_torch = y_torch.to(device).to(torch.float32)
|
| 302 |
return y_torch
|
| 303 |
|
| 304 |
+
elif type in ['canny']:
|
| 305 |
low_threshold = kwargs.pop('low_threshold', 100)
|
| 306 |
high_threshold = kwargs.pop('high_threshold', 200)
|
| 307 |
from .controlnet_annotator.canny import apply_canny
|
|
|
|
| 320 |
unload_midas_model()
|
| 321 |
return y_torch
|
| 322 |
|
| 323 |
+
elif type in ['hed']:
|
| 324 |
from .controlnet_annotator.hed import apply_hed, unload_hed_model
|
| 325 |
y_list = [apply_hed(np.array(xi), device=device) for xi in x_list]
|
| 326 |
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list])
|
|
|
|
| 349 |
unload_midas_model()
|
| 350 |
return y_torch
|
| 351 |
|
| 352 |
+
elif type in ['openpose']:
|
| 353 |
from .controlnet_annotator.openpose import OpenposeModel
|
| 354 |
from functools import partial
|
| 355 |
wrapper = OpenposeModel()
|
|
|
|
| 359 |
y_list = [apply_openpose(np.array(xi)) for xi in x_list]
|
| 360 |
y_torch = torch.stack([tvtrans.ToTensor()(yi.copy()) for yi in y_list])
|
| 361 |
y_torch = y_torch.to(device).to(torch.float32)
|
| 362 |
+
wrapper.unload()
|
| 363 |
return y_torch
|
| 364 |
|
| 365 |
+
elif type in ['openpose_withface']:
|
| 366 |
from .controlnet_annotator.openpose import OpenposeModel
|
| 367 |
from functools import partial
|
| 368 |
wrapper = OpenposeModel()
|
|
|
|
| 372 |
y_list = [apply_openpose(np.array(xi)) for xi in x_list]
|
| 373 |
y_torch = torch.stack([tvtrans.ToTensor()(yi.copy()) for yi in y_list])
|
| 374 |
y_torch = y_torch.to(device).to(torch.float32)
|
| 375 |
+
wrapper.unload()
|
| 376 |
return y_torch
|
| 377 |
|
| 378 |
+
elif type in ['openpose_withfacehand']:
|
| 379 |
from .controlnet_annotator.openpose import OpenposeModel
|
| 380 |
from functools import partial
|
| 381 |
wrapper = OpenposeModel()
|
|
|
|
| 385 |
y_list = [apply_openpose(np.array(xi)) for xi in x_list]
|
| 386 |
y_torch = torch.stack([tvtrans.ToTensor()(yi.copy()) for yi in y_list])
|
| 387 |
y_torch = y_torch.to(device).to(torch.float32)
|
| 388 |
+
wrapper.unload()
|
| 389 |
return y_torch
|
| 390 |
|
| 391 |
elif type == 'scribble':
|
lib/model_zoo/controlnet_annotator/midas/__init__.py
CHANGED
|
@@ -16,8 +16,7 @@ def apply_midas(input_image, a=np.pi * 2.0, bg_th=0.1, device='cpu'):
|
|
| 16 |
global model
|
| 17 |
if model is None:
|
| 18 |
model = MiDaSInference(model_type="dpt_hybrid")
|
| 19 |
-
|
| 20 |
-
|
| 21 |
assert input_image.ndim == 3
|
| 22 |
image_depth = input_image
|
| 23 |
with torch.no_grad():
|
|
|
|
| 16 |
global model
|
| 17 |
if model is None:
|
| 18 |
model = MiDaSInference(model_type="dpt_hybrid")
|
| 19 |
+
model = model.to(device)
|
|
|
|
| 20 |
assert input_image.ndim == 3
|
| 21 |
image_depth = input_image
|
| 22 |
with torch.no_grad():
|
lib/model_zoo/controlnet_annotator/openpose/__init__.py
CHANGED
|
@@ -18,6 +18,8 @@ from .body import Body, BodyResult, Keypoint
|
|
| 18 |
from .hand import Hand
|
| 19 |
from .face import Face
|
| 20 |
|
|
|
|
|
|
|
| 21 |
models_path = "pretrained/controlnet/preprocess"
|
| 22 |
|
| 23 |
from typing import NamedTuple, Tuple, List, Callable, Union
|
|
@@ -170,11 +172,21 @@ class OpenposeDetector:
|
|
| 170 |
"""
|
| 171 |
Unload the Openpose models by moving them to the CPU.
|
| 172 |
"""
|
|
|
|
| 173 |
if self.body_estimation is not None:
|
| 174 |
self.body_estimation.model.to("cpu")
|
| 175 |
self.hand_estimation.model.to("cpu")
|
| 176 |
self.face_estimation.model.to("cpu")
|
| 177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
def detect_hands(self, body: BodyResult, oriImg) -> Tuple[Union[HandResult, None], Union[HandResult, None]]:
|
| 179 |
left_hand = None
|
| 180 |
right_hand = None
|
|
@@ -291,7 +303,7 @@ class OpenposeDetector:
|
|
| 291 |
|
| 292 |
class OpenposeModel(object):
|
| 293 |
def __init__(self) -> None:
|
| 294 |
-
|
| 295 |
|
| 296 |
def run_model(
|
| 297 |
self,
|
|
@@ -302,13 +314,17 @@ class OpenposeModel(object):
|
|
| 302 |
json_pose_callback: Callable[[str], None] = None,
|
| 303 |
device = 'cpu', ):
|
| 304 |
|
|
|
|
|
|
|
| 305 |
if json_pose_callback is None:
|
| 306 |
json_pose_callback = lambda x: None
|
| 307 |
|
| 308 |
-
if
|
| 309 |
-
|
|
|
|
|
|
|
| 310 |
|
| 311 |
-
return
|
| 312 |
img,
|
| 313 |
include_body=include_body,
|
| 314 |
include_hand=include_hand,
|
|
@@ -316,5 +332,6 @@ class OpenposeModel(object):
|
|
| 316 |
json_pose_callback=json_pose_callback)
|
| 317 |
|
| 318 |
def unload(self):
|
| 319 |
-
|
| 320 |
-
|
|
|
|
|
|
| 18 |
from .hand import Hand
|
| 19 |
from .face import Face
|
| 20 |
|
| 21 |
+
openposemodel = None
|
| 22 |
+
|
| 23 |
models_path = "pretrained/controlnet/preprocess"
|
| 24 |
|
| 25 |
from typing import NamedTuple, Tuple, List, Callable, Union
|
|
|
|
| 172 |
"""
|
| 173 |
Unload the Openpose models by moving them to the CPU.
|
| 174 |
"""
|
| 175 |
+
self.device = "cpu"
|
| 176 |
if self.body_estimation is not None:
|
| 177 |
self.body_estimation.model.to("cpu")
|
| 178 |
self.hand_estimation.model.to("cpu")
|
| 179 |
self.face_estimation.model.to("cpu")
|
| 180 |
|
| 181 |
+
def set_device(self, device):
|
| 182 |
+
self.device = device
|
| 183 |
+
if self.body_estimation is not None:
|
| 184 |
+
self.body_estimation.model.to(device)
|
| 185 |
+
if self.hand_estimation is not None:
|
| 186 |
+
self.hand_estimation.model.to(device)
|
| 187 |
+
if self.face_estimation is not None:
|
| 188 |
+
self.face_estimation.model.to(device)
|
| 189 |
+
|
| 190 |
def detect_hands(self, body: BodyResult, oriImg) -> Tuple[Union[HandResult, None], Union[HandResult, None]]:
|
| 191 |
left_hand = None
|
| 192 |
right_hand = None
|
|
|
|
| 303 |
|
| 304 |
class OpenposeModel(object):
|
| 305 |
def __init__(self) -> None:
|
| 306 |
+
pass
|
| 307 |
|
| 308 |
def run_model(
|
| 309 |
self,
|
|
|
|
| 314 |
json_pose_callback: Callable[[str], None] = None,
|
| 315 |
device = 'cpu', ):
|
| 316 |
|
| 317 |
+
global openposemodel
|
| 318 |
+
|
| 319 |
if json_pose_callback is None:
|
| 320 |
json_pose_callback = lambda x: None
|
| 321 |
|
| 322 |
+
if openposemodel is None:
|
| 323 |
+
openposemodel = OpenposeDetector(device=device)
|
| 324 |
+
else:
|
| 325 |
+
openposemodel.set_device(device)
|
| 326 |
|
| 327 |
+
return openposemodel(
|
| 328 |
img,
|
| 329 |
include_body=include_body,
|
| 330 |
include_hand=include_hand,
|
|
|
|
| 332 |
json_pose_callback=json_pose_callback)
|
| 333 |
|
| 334 |
def unload(self):
|
| 335 |
+
global openposemodel
|
| 336 |
+
if openposemodel is not None:
|
| 337 |
+
openposemodel.unload_model()
|