Spaces:
Sleeping
Sleeping
File size: 1,326 Bytes
0105e3b f89cec9 7268351 be89ae1 ea4634d 84326e0 7268351 ea4634d 84326e0 f89cec9 f37d2cc 2dc8def 84326e0 7268351 2dc8def 5a94c8e 7268351 f89cec9 7268351 da72d89 f16063a da72d89 e94ec88 8d3fcda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import streamlit as st
import pandas as pd
from db import insert_data_if_empty, get_mongo_client
from chatbot import chatbot_response
# Ensure historical data is inserted into MongoDB if not already present.
insert_data_if_empty()
# Connect to MongoDB (optional: for additional visualizations)
collection = get_mongo_client()
st.subheader("💬 Chatbot with Sentiment Analysis & Category Extraction")
# Updated hint to include examples for basic questions and entry queries.
user_prompt = st.text_area(
"Ask me something (e.g., 'Provide analysis for data entry 1 in the dataset' or 'What is the dataset summary?'):"
)
if st.button("Get Response"):
ai_response, sentiment_label, sentiment_confidence, topic_label, topic_confidence = chatbot_response(user_prompt)
if ai_response:
st.write("### Response:")
st.write(ai_response)
st.write("### Sentiment Analysis:")
# Convert sentiment confidence to percentage format (e.g., 70% confidence)
st.write(f"**Sentiment Detected:** {sentiment_label} ({sentiment_confidence * 100:.0f}% confidence)")
st.write("### Category Extraction:")
st.write(f"**Category Detected:** {topic_label} ({topic_confidence * 100:.0f}% confidence)")
else:
st.warning("⚠️ Please enter a question or text for analysis.")
|