KrSharangrav commited on
Commit
5a94c8e
Β·
1 Parent(s): f763dd0

changes in the topic extraction model

Browse files
Files changed (2) hide show
  1. app.py +7 -8
  2. chatbot.py +25 -15
app.py CHANGED
@@ -26,24 +26,23 @@ collection = get_mongo_client()
26
  # all_data = list(collection.find({}, {"_id": 0}))
27
  # st.write(pd.DataFrame(all_data))
28
 
29
- #### **4. AI Chatbot with Sentiment Analysis & Topic Extraction**
30
- st.subheader("πŸ€– AI Chatbot with Sentiment Analysis & Topic Extraction")
31
 
32
  # User input for chatbot
33
- user_prompt = st.text_area("Ask AI something or paste text for sentiment analysis:")
34
 
35
  if st.button("Analyze Sentiment & Get AI Response"):
36
- ai_response, sentiment_label, confidence, topics = chatbot_response(user_prompt)
37
 
38
  if ai_response:
39
  st.write("### AI Response:")
40
  st.write(ai_response)
41
 
42
  st.write("### Sentiment Analysis:")
43
- st.write(f"**Sentiment:** {sentiment_label} ({confidence:.2f} confidence)")
44
-
45
- st.write("### Extracted Topics:")
46
- st.write(", ".join(topics) if topics else "No topics identified.")
47
 
 
 
48
  else:
49
  st.warning("⚠️ Please enter a question or text for analysis.")
 
26
  # all_data = list(collection.find({}, {"_id": 0}))
27
  # st.write(pd.DataFrame(all_data))
28
 
29
+ #### **4. AI Chatbot with Sentiment & Topic Analysis**
30
+ st.subheader("πŸ€– AI Chatbot with Sentiment & Topic Analysis")
31
 
32
  # User input for chatbot
33
+ user_prompt = st.text_area("Ask AI something or paste text for analysis:")
34
 
35
  if st.button("Analyze Sentiment & Get AI Response"):
36
+ ai_response, sentiment_label, sentiment_confidence, topic_label, topic_confidence = chatbot_response(user_prompt)
37
 
38
  if ai_response:
39
  st.write("### AI Response:")
40
  st.write(ai_response)
41
 
42
  st.write("### Sentiment Analysis:")
43
+ st.write(f"**Sentiment:** {sentiment_label} ({sentiment_confidence:.2f} confidence)")
 
 
 
44
 
45
+ st.write("### Topic Extraction:")
46
+ st.write(f"**Detected Topic:** {topic_label} ({topic_confidence:.2f} confidence)")
47
  else:
48
  st.warning("⚠️ Please enter a question or text for analysis.")
chatbot.py CHANGED
@@ -2,7 +2,6 @@ import os
2
  import streamlit as st
3
  import google.generativeai as genai
4
  from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
5
- from keybert import KeyBERT # Topic Extraction
6
 
7
  # πŸ”‘ Fetch API key from Hugging Face Secrets
8
  GEMINI_API_KEY = os.getenv("gemini_api")
@@ -12,7 +11,7 @@ if GEMINI_API_KEY:
12
  else:
13
  st.error("⚠️ Google API key is missing! Set it in Hugging Face Secrets.")
14
 
15
- # Correct Model Path
16
  MODEL_NAME = "cardiffnlp/twitter-roberta-base-sentiment"
17
 
18
  # Load Sentiment Analysis Model
@@ -22,8 +21,17 @@ try:
22
  except Exception as e:
23
  st.error(f"❌ Error loading sentiment model: {e}")
24
 
25
- # Load KeyBERT for topic extraction
26
- kw_model = KeyBERT()
 
 
 
 
 
 
 
 
 
27
 
28
  # Function to analyze sentiment
29
  def analyze_sentiment(text):
@@ -42,18 +50,20 @@ def analyze_sentiment(text):
42
  except Exception as e:
43
  return f"Error analyzing sentiment: {e}", None
44
 
45
- # Function to extract key topics
46
- def extract_topics(text, num_keywords=3):
47
  try:
48
- keywords = kw_model.extract_keywords(text, keyphrase_ngram_range=(1, 2), top_n=num_keywords)
49
- return [word[0] for word in keywords] # Return only the keywords
 
 
50
  except Exception as e:
51
- return [f"Error extracting topics: {e}"]
52
 
53
- # Function to generate AI response, analyze sentiment, and extract topics
54
  def chatbot_response(user_prompt):
55
  if not user_prompt:
56
- return None, None, None, None
57
 
58
  try:
59
  # AI Response from Gemini
@@ -61,11 +71,11 @@ def chatbot_response(user_prompt):
61
  ai_response = model.generate_content(user_prompt)
62
 
63
  # Sentiment Analysis
64
- sentiment_label, confidence = analyze_sentiment(user_prompt)
65
 
66
  # Topic Extraction
67
- topics = extract_topics(user_prompt)
68
 
69
- return ai_response.text, sentiment_label, confidence, topics
70
  except Exception as e:
71
- return f"❌ Error: {e}", None, None, None
 
2
  import streamlit as st
3
  import google.generativeai as genai
4
  from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
 
5
 
6
  # πŸ”‘ Fetch API key from Hugging Face Secrets
7
  GEMINI_API_KEY = os.getenv("gemini_api")
 
11
  else:
12
  st.error("⚠️ Google API key is missing! Set it in Hugging Face Secrets.")
13
 
14
+ # Model for Sentiment Analysis
15
  MODEL_NAME = "cardiffnlp/twitter-roberta-base-sentiment"
16
 
17
  # Load Sentiment Analysis Model
 
21
  except Exception as e:
22
  st.error(f"❌ Error loading sentiment model: {e}")
23
 
24
+ # Load Topic Extraction Model
25
+ try:
26
+ topic_pipeline = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
27
+ except Exception as e:
28
+ st.error(f"❌ Error loading topic extraction model: {e}")
29
+
30
+ # Predefined topic labels for classification
31
+ TOPIC_LABELS = [
32
+ "Technology", "Politics", "Business", "Sports", "Entertainment",
33
+ "Health", "Science", "Education", "Finance", "Travel", "Food"
34
+ ]
35
 
36
  # Function to analyze sentiment
37
  def analyze_sentiment(text):
 
50
  except Exception as e:
51
  return f"Error analyzing sentiment: {e}", None
52
 
53
+ # Function to extract topic
54
+ def extract_topic(text):
55
  try:
56
+ topic_result = topic_pipeline(text, TOPIC_LABELS)
57
+ top_topic = topic_result["labels"][0] # Get the highest confidence topic
58
+ confidence = topic_result["scores"][0] # Confidence score for the topic
59
+ return top_topic, confidence
60
  except Exception as e:
61
+ return f"Error extracting topic: {e}", None
62
 
63
+ # Function to generate AI response, sentiment, and topic
64
  def chatbot_response(user_prompt):
65
  if not user_prompt:
66
+ return None, None, None, None, None
67
 
68
  try:
69
  # AI Response from Gemini
 
71
  ai_response = model.generate_content(user_prompt)
72
 
73
  # Sentiment Analysis
74
+ sentiment_label, sentiment_confidence = analyze_sentiment(user_prompt)
75
 
76
  # Topic Extraction
77
+ topic_label, topic_confidence = extract_topic(user_prompt)
78
 
79
+ return ai_response.text, sentiment_label, sentiment_confidence, topic_label, topic_confidence
80
  except Exception as e:
81
+ return f"❌ Error: {e}", None, None, None, None