Spaces:
Sleeping
Sleeping
KrSharangrav
commited on
Commit
Β·
84326e0
1
Parent(s):
4ec2156
change in logic
Browse files- app.py +7 -5
- chatbot.py +41 -26
- db.py +18 -1
app.py
CHANGED
|
@@ -3,15 +3,17 @@ import pandas as pd
|
|
| 3 |
from db import insert_data_if_empty, get_mongo_client
|
| 4 |
from chatbot import chatbot_response
|
| 5 |
|
| 6 |
-
# Ensure
|
| 7 |
insert_data_if_empty()
|
| 8 |
|
| 9 |
-
# Connect to MongoDB (optional:
|
| 10 |
collection = get_mongo_client()
|
| 11 |
|
| 12 |
-
st.subheader("π¬ Chatbot with Analysis
|
| 13 |
-
# Updated hint
|
| 14 |
-
user_prompt = st.text_area(
|
|
|
|
|
|
|
| 15 |
|
| 16 |
if st.button("Get AI Response"):
|
| 17 |
ai_response, sentiment_label, sentiment_confidence, topic_label, topic_confidence = chatbot_response(user_prompt)
|
|
|
|
| 3 |
from db import insert_data_if_empty, get_mongo_client
|
| 4 |
from chatbot import chatbot_response
|
| 5 |
|
| 6 |
+
# Ensure historical data is inserted into MongoDB if not already present.
|
| 7 |
insert_data_if_empty()
|
| 8 |
|
| 9 |
+
# Connect to MongoDB (optional: for additional visualizations)
|
| 10 |
collection = get_mongo_client()
|
| 11 |
|
| 12 |
+
st.subheader("π¬ Chatbot with Dataset Analysis")
|
| 13 |
+
# Updated hint to include examples for basic questions and entry queries.
|
| 14 |
+
user_prompt = st.text_area(
|
| 15 |
+
"Ask me something (e.g., 'Provide analysis for data entry 1 in the dataset' or 'What is the dataset summary?'):"
|
| 16 |
+
)
|
| 17 |
|
| 18 |
if st.button("Get AI Response"):
|
| 19 |
ai_response, sentiment_label, sentiment_confidence, topic_label, topic_confidence = chatbot_response(user_prompt)
|
chatbot.py
CHANGED
|
@@ -3,7 +3,7 @@ import re
|
|
| 3 |
import streamlit as st
|
| 4 |
import google.generativeai as genai
|
| 5 |
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
| 6 |
-
from db import get_entry_by_index
|
| 7 |
|
| 8 |
# Configure Gemini API key
|
| 9 |
GEMINI_API_KEY = os.getenv("gemini_api")
|
|
@@ -56,55 +56,70 @@ def extract_topic(text):
|
|
| 56 |
except Exception as e:
|
| 57 |
return f"Error extracting topic: {e}", None
|
| 58 |
|
| 59 |
-
# Helper:
|
| 60 |
-
# For example, "data entry 1" or "entry 2" will return index 0 or 1 respectively.
|
| 61 |
def extract_entry_index(prompt):
|
| 62 |
match = re.search(r'(data entry|entry)\s+(\d+)', prompt, re.IGNORECASE)
|
| 63 |
if match:
|
| 64 |
-
index = int(match.group(2)) - 1 #
|
| 65 |
return index
|
| 66 |
return None
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
def chatbot_response(user_prompt):
|
| 69 |
if not user_prompt:
|
| 70 |
return None, None, None, None, None
|
| 71 |
|
| 72 |
try:
|
| 73 |
-
#
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
if entry is None:
|
| 79 |
return "β No entry found for the requested index.", None, None, None, None
|
| 80 |
-
#
|
| 81 |
entry_text = entry.get("text", "No text available.")
|
| 82 |
entry_user = entry.get("user", "Unknown")
|
| 83 |
entry_date = entry.get("date", "Unknown")
|
| 84 |
-
|
| 85 |
-
# Build a static response message with the desired formatting.
|
| 86 |
ai_response = (
|
| 87 |
"Let's break down this tweet-like MongoDB entry:\n\n"
|
| 88 |
f"Tweet: {entry_text}\n"
|
| 89 |
f"User: {entry_user}\n"
|
| 90 |
f"Date: {entry_date}"
|
| 91 |
)
|
| 92 |
-
|
| 93 |
-
# Run sentiment and topic analysis on the entry's text.
|
| 94 |
sentiment_label, sentiment_confidence = analyze_sentiment(entry_text)
|
| 95 |
topic_label, topic_confidence = extract_topic(entry_text)
|
| 96 |
-
|
| 97 |
-
return ai_response, sentiment_label, sentiment_confidence, topic_label, topic_confidence
|
| 98 |
-
else:
|
| 99 |
-
# For all other queries, use the generative model flow.
|
| 100 |
-
model_gen = genai.GenerativeModel("gemini-1.5-pro")
|
| 101 |
-
ai_response_obj = model_gen.generate_content(user_prompt)
|
| 102 |
-
ai_response = ai_response_obj.text
|
| 103 |
-
|
| 104 |
-
# Perform sentiment and topic analysis on the user prompt.
|
| 105 |
-
sentiment_label, sentiment_confidence = analyze_sentiment(user_prompt)
|
| 106 |
-
topic_label, topic_confidence = extract_topic(user_prompt)
|
| 107 |
-
|
| 108 |
return ai_response, sentiment_label, sentiment_confidence, topic_label, topic_confidence
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
except Exception as e:
|
| 110 |
return f"β Error: {e}", None, None, None, None
|
|
|
|
| 3 |
import streamlit as st
|
| 4 |
import google.generativeai as genai
|
| 5 |
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
| 6 |
+
from db import get_entry_by_index, get_dataset_summary
|
| 7 |
|
| 8 |
# Configure Gemini API key
|
| 9 |
GEMINI_API_KEY = os.getenv("gemini_api")
|
|
|
|
| 56 |
except Exception as e:
|
| 57 |
return f"Error extracting topic: {e}", None
|
| 58 |
|
| 59 |
+
# Helper: Extract entry index from prompt (e.g., "data entry 1" yields index 0)
|
|
|
|
| 60 |
def extract_entry_index(prompt):
|
| 61 |
match = re.search(r'(data entry|entry)\s+(\d+)', prompt, re.IGNORECASE)
|
| 62 |
if match:
|
| 63 |
+
index = int(match.group(2)) - 1 # convert to 0-based index
|
| 64 |
return index
|
| 65 |
return None
|
| 66 |
|
| 67 |
+
# Helper: Detect if the query is asking for a specific dataset entry.
|
| 68 |
+
def is_entry_query(prompt):
|
| 69 |
+
index = extract_entry_index(prompt)
|
| 70 |
+
if index is not None:
|
| 71 |
+
return True, index
|
| 72 |
+
return False, None
|
| 73 |
+
|
| 74 |
+
# Helper: Detect if the query is a basic dataset question.
|
| 75 |
+
# Examples: "What is the dataset summary?", "Show me the sentiment distribution", etc.
|
| 76 |
+
def is_basic_dataset_question(prompt):
|
| 77 |
+
lower = prompt.lower()
|
| 78 |
+
keywords = ["dataset summary", "total tweets", "sentiment distribution", "overall dataset", "data overview", "data summary"]
|
| 79 |
+
return any(keyword in lower for keyword in keywords)
|
| 80 |
+
|
| 81 |
def chatbot_response(user_prompt):
|
| 82 |
if not user_prompt:
|
| 83 |
return None, None, None, None, None
|
| 84 |
|
| 85 |
try:
|
| 86 |
+
# If the query is a basic dataset question, fetch summary from MongoDB.
|
| 87 |
+
if is_basic_dataset_question(user_prompt):
|
| 88 |
+
summary = get_dataset_summary()
|
| 89 |
+
ai_response = "Dataset Summary:\n" + summary
|
| 90 |
+
# Run analysis on the summary text
|
| 91 |
+
sentiment_label, sentiment_confidence = analyze_sentiment(summary)
|
| 92 |
+
topic_label, topic_confidence = extract_topic(summary)
|
| 93 |
+
return ai_response, sentiment_label, sentiment_confidence, topic_label, topic_confidence
|
| 94 |
+
|
| 95 |
+
# If the query is about a specific entry in the dataset...
|
| 96 |
+
entry_query, index = is_entry_query(user_prompt)
|
| 97 |
+
if entry_query:
|
| 98 |
+
entry = get_entry_by_index(index)
|
| 99 |
if entry is None:
|
| 100 |
return "β No entry found for the requested index.", None, None, None, None
|
| 101 |
+
# Retrieve fields from the document
|
| 102 |
entry_text = entry.get("text", "No text available.")
|
| 103 |
entry_user = entry.get("user", "Unknown")
|
| 104 |
entry_date = entry.get("date", "Unknown")
|
| 105 |
+
# Build a static response message with the required format
|
|
|
|
| 106 |
ai_response = (
|
| 107 |
"Let's break down this tweet-like MongoDB entry:\n\n"
|
| 108 |
f"Tweet: {entry_text}\n"
|
| 109 |
f"User: {entry_user}\n"
|
| 110 |
f"Date: {entry_date}"
|
| 111 |
)
|
|
|
|
|
|
|
| 112 |
sentiment_label, sentiment_confidence = analyze_sentiment(entry_text)
|
| 113 |
topic_label, topic_confidence = extract_topic(entry_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
return ai_response, sentiment_label, sentiment_confidence, topic_label, topic_confidence
|
| 115 |
+
|
| 116 |
+
# For other queries, use the generative model (this branch may be slower).
|
| 117 |
+
model_gen = genai.GenerativeModel("gemini-1.5-pro")
|
| 118 |
+
ai_response_obj = model_gen.generate_content(user_prompt)
|
| 119 |
+
ai_response = ai_response_obj.text
|
| 120 |
+
sentiment_label, sentiment_confidence = analyze_sentiment(user_prompt)
|
| 121 |
+
topic_label, topic_confidence = extract_topic(user_prompt)
|
| 122 |
+
return ai_response, sentiment_label, sentiment_confidence, topic_label, topic_confidence
|
| 123 |
+
|
| 124 |
except Exception as e:
|
| 125 |
return f"β Error: {e}", None, None, None, None
|
db.py
CHANGED
|
@@ -27,9 +27,26 @@ def insert_data_if_empty():
|
|
| 27 |
except Exception as e:
|
| 28 |
print(f"β Error loading dataset: {e}")
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
def get_entry_by_index(index=0):
|
| 31 |
collection = get_mongo_client()
|
| 32 |
-
# Fetch the document by skipping "index" entries.
|
| 33 |
doc_cursor = collection.find({}, {"_id": 0}).skip(index).limit(1)
|
| 34 |
docs = list(doc_cursor)
|
| 35 |
if docs:
|
|
|
|
| 27 |
except Exception as e:
|
| 28 |
print(f"β Error loading dataset: {e}")
|
| 29 |
|
| 30 |
+
def get_dataset_summary():
|
| 31 |
+
collection = get_mongo_client()
|
| 32 |
+
pipeline = [
|
| 33 |
+
{"$group": {"_id": "$target", "count": {"$sum": 1}}}
|
| 34 |
+
]
|
| 35 |
+
results = list(collection.aggregate(pipeline))
|
| 36 |
+
mapping = {"0": "Negative", "2": "Neutral", "4": "Positive"}
|
| 37 |
+
summary_parts = []
|
| 38 |
+
total = 0
|
| 39 |
+
for doc in results:
|
| 40 |
+
target = str(doc["_id"])
|
| 41 |
+
count = doc["count"]
|
| 42 |
+
total += count
|
| 43 |
+
label = mapping.get(target, target)
|
| 44 |
+
summary_parts.append(f"{label}: {count}")
|
| 45 |
+
summary = f"Total tweets: {total}. " + ", ".join(summary_parts) + "."
|
| 46 |
+
return summary
|
| 47 |
+
|
| 48 |
def get_entry_by_index(index=0):
|
| 49 |
collection = get_mongo_client()
|
|
|
|
| 50 |
doc_cursor = collection.find({}, {"_id": 0}).skip(index).limit(1)
|
| 51 |
docs = list(doc_cursor)
|
| 52 |
if docs:
|