Spaces:
Sleeping
Sleeping
File size: 5,219 Bytes
7268351 979706a 7268351 be89ae1 84326e0 b83a640 be89ae1 7268351 be89ae1 7268351 be89ae1 f5b718b 7268351 be89ae1 7268351 5a94c8e f763dd0 7268351 8d3fcda f37d2cc 7268351 5a94c8e f763dd0 8d3fcda 5a94c8e f763dd0 5a94c8e f763dd0 84326e0 f89cec9 979706a 84326e0 f89cec9 f37d2cc 6e2dc41 84326e0 7268351 5a94c8e f37d2cc 979706a 84326e0 979706a f89cec9 84326e0 979706a f89cec9 84326e0 f89cec9 4ec2156 f89cec9 6e2dc41 f89cec9 84326e0 979706a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import os
import re
import streamlit as st
import google.generativeai as genai
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
from db import get_entry_by_index, get_dataset_summary
# Configure Gemini API key
GEMINI_API_KEY = os.getenv("gemini_api")
if GEMINI_API_KEY:
genai.configure(api_key=GEMINI_API_KEY)
else:
st.error("⚠️ Google API key is missing! Set it in Hugging Face Secrets.")
# Load pre-trained sentiment analysis model
MODEL_NAME = "cardiffnlp/twitter-roberta-base-sentiment"
try:
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
sentiment_pipeline = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
except Exception as e:
st.error(f"❌ Error loading sentiment model: {e}")
# Load Topic Extraction Model
try:
topic_pipeline = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
except Exception as e:
st.error(f"❌ Error loading topic extraction model: {e}")
# Predefined topic labels for classification
TOPIC_LABELS = [
"Technology", "Politics", "Business", "Sports", "Entertainment",
"Health", "Science", "Education", "Finance", "Travel", "Food"
]
def analyze_sentiment(text):
try:
result = sentiment_pipeline(text)[0]
label = result['label']
score = result['score']
sentiment_mapping = {
"LABEL_0": "Negative",
"LABEL_1": "Neutral",
"LABEL_2": "Positive"
}
return sentiment_mapping.get(label, "Unknown"), score
except Exception as e:
return f"Error analyzing sentiment: {e}", None
def extract_topic(text):
try:
result = topic_pipeline(text, TOPIC_LABELS)
top_topic = result["labels"][0]
confidence = result["scores"][0]
return top_topic, confidence
except Exception as e:
return f"Error extracting topic: {e}", None
# Helper: Extract entry index from prompt (e.g., "data entry 1" yields index 0)
def extract_entry_index(prompt):
match = re.search(r'(data entry|entry)\s+(\d+)', prompt, re.IGNORECASE)
if match:
index = int(match.group(2)) - 1 # convert to 0-based index
return index
return None
# Helper: Detect if the query is asking for a specific dataset entry.
def is_entry_query(prompt):
index = extract_entry_index(prompt)
if index is not None:
return True, index
return False, None
# Helper: Detect if the query is a basic dataset question.
# Examples: "What is the dataset summary?", "Show me the sentiment distribution", etc.
def is_basic_dataset_question(prompt):
lower = prompt.lower()
keywords = ["dataset summary", "total tweets", "sentiment distribution", "overall dataset", "data overview", "data summary"]
return any(keyword in lower for keyword in keywords)
def chatbot_response(user_prompt):
if not user_prompt:
return None, None, None, None, None
try:
# If the query is a basic dataset question, fetch summary from MongoDB.
if is_basic_dataset_question(user_prompt):
summary = get_dataset_summary()
ai_response = "Dataset Summary:\n" + summary
# Run analysis on the summary text
sentiment_label, sentiment_confidence = analyze_sentiment(summary)
topic_label, topic_confidence = extract_topic(summary)
return ai_response, sentiment_label, sentiment_confidence, topic_label, topic_confidence
# If the query is about a specific entry in the dataset...
entry_query, index = is_entry_query(user_prompt)
if entry_query:
entry = get_entry_by_index(index)
if entry is None:
return "❌ No entry found for the requested index.", None, None, None, None
# Retrieve fields from the document
entry_text = entry.get("text", "No text available.")
entry_user = entry.get("user", "Unknown")
entry_date = entry.get("date", "Unknown")
# Build a static response message with the required format
ai_response = (
"Let's break down this tweet-like MongoDB entry:\n\n"
f"Tweet: {entry_text}\n"
f"User: {entry_user}\n"
f"Date: {entry_date}"
)
sentiment_label, sentiment_confidence = analyze_sentiment(entry_text)
topic_label, topic_confidence = extract_topic(entry_text)
return ai_response, sentiment_label, sentiment_confidence, topic_label, topic_confidence
# For other queries, use the generative model (this branch may be slower).
model_gen = genai.GenerativeModel("gemini-1.5-pro")
ai_response_obj = model_gen.generate_content(user_prompt)
ai_response = ai_response_obj.text
sentiment_label, sentiment_confidence = analyze_sentiment(user_prompt)
topic_label, topic_confidence = extract_topic(user_prompt)
return ai_response, sentiment_label, sentiment_confidence, topic_label, topic_confidence
except Exception as e:
return f"❌ Error: {e}", None, None, None, None
|