KingNish's picture
Update app.py
b0cba66 verified
raw
history blame
17.3 kB
import gradio as gr
import subprocess
import os
import spaces
import shutil
import torch
import sys
import uuid
import re
print("Installing flash-attn...")
# Install flash attention
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True
)
from huggingface_hub import snapshot_download
# Create xcodec_mini_infer folder if it does not exist
folder_path = './xcodec_mini_infer'
if not os.path.exists(folder_path):
os.mkdir(folder_path)
print(f"Folder created at: {folder_path}")
else:
print(f"Folder already exists at: {folder_path}")
snapshot_download(
repo_id="m-a-p/xcodec_mini_infer",
local_dir="./xcodec_mini_infer"
)
# Change working directory if needed
inference_dir = "."
try:
os.chdir(inference_dir)
print(f"Changed working directory to: {os.getcwd()}")
except FileNotFoundError:
print(f"Directory not found: {inference_dir}")
exit(1)
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
import numpy as np
import json
import argparse
from omegaconf import OmegaConf
import torchaudio
from torchaudio.transforms import Resample
import soundfile as sf
from tqdm import tqdm
from einops import rearrange
from codecmanipulator import CodecManipulator
from mmtokenizer import _MMSentencePieceTokenizer
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
import glob
import time
import copy
from collections import Counter
from models.soundstream_hubert_new import SoundStream
# ---------------------------------------------------------------------
# Load models, configurations, and tokenizers (run once at startup)
# ---------------------------------------------------------------------
device = "cuda:0"
print("Loading model...")
model = AutoModelForCausalLM.from_pretrained(
"m-a-p/YuE-s1-7B-anneal-en-cot",
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
).to(device)
model.eval()
print("Model loaded.")
basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml'
resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth'
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
codectool = CodecManipulator("xcodec", 0, 1)
model_config = OmegaConf.load(basic_model_config)
# Load codec model
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
parameter_dict = torch.load(resume_path, map_location='cpu')
codec_model.load_state_dict(parameter_dict['codec_model'])
codec_model.eval()
print("Codec model loaded.")
# ---------------------------------------------------------------------
# Helper Classes and Functions
# ---------------------------------------------------------------------
class BlockTokenRangeProcessor(LogitsProcessor):
def __init__(self, start_id, end_id):
self.blocked_token_ids = list(range(start_id, end_id))
def __call__(self, input_ids, scores):
scores[:, self.blocked_token_ids] = -float("inf")
return scores
def load_audio_mono(filepath, sampling_rate=16000):
audio, sr = torchaudio.load(filepath)
# Convert to mono
audio = torch.mean(audio, dim=0, keepdim=True)
# Resample if needed
if sr != sampling_rate:
resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
audio = resampler(audio)
return audio
def split_lyrics(lyrics: str):
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
segments = re.findall(pattern, lyrics, re.DOTALL)
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
return structured_lyrics
# ---------------------------
# CUDA Heavy Functions
# ---------------------------
@spaces.GPU(duration=175)
def requires_cuda_generation(input_ids, max_new_tokens, top_p, temperature, repetition_penalty, guidance_scale):
"""
Performs the CUDA-intensive generation using the language model.
"""
with torch.inference_mode(), torch.autocast(device_type='cuda', dtype=torch.float16):
output_seq = model.generate(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
min_new_tokens=100, # To avoid too-short generations
do_sample=True,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
eos_token_id=mmtokenizer.eoa,
pad_token_id=mmtokenizer.eoa,
logits_processor=LogitsProcessorList([
BlockTokenRangeProcessor(0, 32002),
BlockTokenRangeProcessor(32016, 32016)
]),
guidance_scale=guidance_scale,
use_cache=True
)
# If the generated sequence does not end with the end-of-audio token, append it.
if output_seq[0][-1].item() != mmtokenizer.eoa:
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device)
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
return output_seq
@spaces.GPU(duration=15)
def requires_cuda_decode(codec_result):
"""
Uses the codec model on the GPU to decode a given numpy array of codec IDs
into a waveform tensor.
"""
with torch.no_grad():
# Convert the numpy result to tensor and move to device
codec_tensor = torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long)
# The expected shape is (seq_len, batch, channels), so we add and permute dims as needed.
codec_tensor = codec_tensor.unsqueeze(0).permute(1, 0, 2).to(device)
decoded_waveform = codec_model.decode(codec_tensor)
return decoded_waveform.cpu().squeeze(0)
def save_audio(wav: torch.Tensor, sample_rate: int, rescale: bool = False):
"""
Convert a waveform tensor to a numpy array (16-bit PCM) without writing to disk.
"""
limit = 0.99
max_val = wav.abs().max()
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
# Return a tuple as expected by Gradio: (sample_rate, np.array)
return sample_rate, (wav.numpy() * 32767).astype(np.int16)
# ---------------------------------------------------------------------
# Main Generation Function (without temporary files/directories)
# ---------------------------------------------------------------------
def generate_music(
genre_txt=None,
lyrics_txt=None,
run_n_segments=2,
max_new_tokens=23,
use_audio_prompt=False,
audio_prompt_path="",
prompt_start_time=0.0,
prompt_end_time=30.0,
cuda_idx=0,
rescale=False,
):
"""
Generates music based on genre and lyrics (and optionally an audio prompt).
The heavy CUDA computations are performed in helper functions.
All intermediate data is kept in memory.
"""
if use_audio_prompt and not audio_prompt_path:
raise FileNotFoundError("Please provide an audio prompt file when 'Use Audio Prompt' is enabled!")
# Scale max_new_tokens (e.g. each token may correspond to 100 time units)
max_new_tokens = max_new_tokens * 100
# Prepare prompt texts from genre and lyrics
genres = genre_txt.strip()
lyrics_segments = split_lyrics(lyrics_txt + "\n")
full_lyrics = "\n".join(lyrics_segments)
# The first prompt is the overall instruction and full lyrics.
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
# Then add each individual lyric segment.
prompt_texts += lyrics_segments
random_id = uuid.uuid4()
raw_output = None
# Generation configuration
top_p = 0.93
temperature = 1.0
repetition_penalty = 1.2
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
# Limit the number of segments to generate (adding 1 because the first prompt is a header)
run_n_segments = min(run_n_segments + 1, len(prompt_texts))
print("Starting generation for segments:")
print(list(enumerate(tqdm(prompt_texts[:run_n_segments]))))
# Loop over each prompt segment
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
# Adjust guidance scale based on segment index
guidance_scale = 1.5 if i <= 1 else 1.2
# For the header prompt, we just use the tokenized text.
if i == 0:
continue
if i == 1:
# Process audio prompt if provided
if use_audio_prompt:
audio_prompt = load_audio_mono(audio_prompt_path)
audio_prompt = audio_prompt.unsqueeze(0)
with torch.no_grad():
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5)
raw_codes = raw_codes.transpose(0, 1)
raw_codes = raw_codes.cpu().numpy().astype(np.int16)
code_ids = codectool.npy2ids(raw_codes[0])
# Select a slice corresponding to the provided time range.
audio_prompt_codec = code_ids[int(prompt_start_time * 50): int(prompt_end_time * 50)]
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa]
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]")
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
else:
head_id = mmtokenizer.tokenize(prompt_texts[0])
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
else:
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
# Convert prompt tokens to tensor and move to device
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device)
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if (i > 1 and raw_output is not None) else prompt_ids
# Ensure input length does not exceed model context window (using last tokens if needed)
max_context = 16384 - max_new_tokens - 1
if input_ids.shape[-1] > max_context:
print(
f'Section {i}: input length {input_ids.shape[-1]} exceeds context length {max_context}. Using last {max_context} tokens.'
)
input_ids = input_ids[:, -max_context:]
# Generate new tokens using the CUDA-heavy helper function
output_seq = requires_cuda_generation(
input_ids,
max_new_tokens,
top_p,
temperature,
repetition_penalty,
guidance_scale
)
# Accumulate outputs across segments
if i > 1:
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1)
else:
raw_output = output_seq
print(f"Accumulated output length: {raw_output.shape[-1]} tokens")
# After generation, convert raw output tokens into codec IDs.
ids = raw_output[0].cpu().numpy()
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()
if len(soa_idx) != len(eoa_idx):
raise ValueError(f"Invalid pairs of soa and eoa: Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}")
vocals_list = []
instrumentals_list = []
# If an audio prompt was used, skip the first pair.
range_begin = 1 if use_audio_prompt else 0
for i in range(range_begin, len(soa_idx)):
codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]]
if codec_ids[0] == 32016:
codec_ids = codec_ids[1:]
# Ensure even length for reshaping into two tracks (vocal and instrumental)
codec_ids = codec_ids[:2 * (len(codec_ids) // 2)]
reshaped = rearrange(codec_ids, "(n b) -> b n", b=2)
vocals_ids = codectool.ids2npy(reshaped[0])
instrumentals_ids = codectool.ids2npy(reshaped[1])
vocals_list.append(vocals_ids)
instrumentals_list.append(instrumentals_ids)
# Concatenate segments in time dimension
vocals_codec = np.concatenate(vocals_list, axis=1)
instrumentals_codec = np.concatenate(instrumentals_list, axis=1)
print("Decoding audio on GPU...")
# Decode the codec arrays to waveforms using the CUDA helper function.
vocal_waveform = requires_cuda_decode(vocals_codec)
instrumental_waveform = requires_cuda_decode(instrumentals_codec)
# Mix the two waveforms (simple summation)
mixed_waveform = (vocal_waveform + instrumental_waveform) / 1.0
# Return the three audio outputs (mixed, vocal, instrumental) as tuples (sample_rate, np.array)
sample_rate = 16000
mixed_audio = save_audio(mixed_waveform, sample_rate, rescale)
vocal_audio = save_audio(vocal_waveform, sample_rate, rescale)
instrumental_audio = save_audio(instrumental_waveform, sample_rate, rescale)
return mixed_audio, vocal_audio, instrumental_audio
# ---------------------------------------------------------------------
# Gradio Interface
# ---------------------------------------------------------------------
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/multimodal-art-projection/YuE">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://map-yue.github.io">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
</div>
""")
with gr.Row():
with gr.Column():
genre_txt = gr.Textbox(label="Genre")
lyrics_txt = gr.Textbox(label="Lyrics")
use_audio_prompt = gr.Checkbox(label="Use Audio Prompt?", value=False)
audio_prompt_input = gr.Audio(type="filepath", label="Audio Prompt (Optional)")
with gr.Column():
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=15, interactive=True)
submit_btn = gr.Button("Submit")
music_out = gr.Audio(label="Mixed Audio Result")
with gr.Accordion(label="Vocal and Instrumental Result", open=False):
vocal_out = gr.Audio(label="Vocal Audio")
instrumental_out = gr.Audio(label="Instrumental Audio")
gr.Markdown("## Call for Contributions\nIf you find this space interesting please feel free to contribute.")
submit_btn.click(
fn=generate_music,
inputs=[
genre_txt,
lyrics_txt,
num_segments,
max_new_tokens,
use_audio_prompt,
audio_prompt_input,
],
outputs=[music_out, vocal_out, instrumental_out]
)
gr.Examples(
examples=[
[
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male",
"""[verse]
Woke up in the morning, sun is shining bright
Chasing all my dreams, gotta get my mind right
City lights are fading, but my vision's clear
Got my team beside me, no room for fear
[chorus]
Walking through the streets, beats inside my head
Every step I take, closer to the bread
People passing by, they don't understand
Building up my future with my own two hands
"""
],
[
"Bass Metalcore Thrash Metal Furious bright vocal male Angry aggressive vocal Guitar",
"""[verse]
Step back cause I'll ignite
Won't quit without a fight
No escape, gear up, it's a fierce fight
Brace up, raise your hands up and light
Fear the might. Step back cause I'll ignite
Won't back down without a fight
It keeps going and going, the heat is on.
[chorus]
Hot flame. Hot flame.
Still here, still holding aim
I don't care if I'm bright or dim: nah.
I've made it clear, I'll make it again
All I want is my crew and my gain.
I'm feeling wild, got a bit of rebel style.
Locked inside my mind, hot flame.
"""
]
],
inputs=[genre_txt, lyrics_txt],
outputs=[music_out, vocal_out, instrumental_out],
cache_examples=True,
cache_mode="eager",
fn=generate_music
)
demo.queue().launch(show_error=True)