|
import gradio as gr |
|
import subprocess |
|
import os |
|
import spaces |
|
import shutil |
|
import torch |
|
import sys |
|
import uuid |
|
import re |
|
|
|
print("Installing flash-attn...") |
|
|
|
subprocess.run( |
|
"pip install flash-attn --no-build-isolation", |
|
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, |
|
shell=True |
|
) |
|
|
|
from huggingface_hub import snapshot_download |
|
|
|
|
|
folder_path = './xcodec_mini_infer' |
|
if not os.path.exists(folder_path): |
|
os.mkdir(folder_path) |
|
print(f"Folder created at: {folder_path}") |
|
else: |
|
print(f"Folder already exists at: {folder_path}") |
|
|
|
snapshot_download( |
|
repo_id="m-a-p/xcodec_mini_infer", |
|
local_dir="./xcodec_mini_infer" |
|
) |
|
|
|
|
|
inference_dir = "." |
|
try: |
|
os.chdir(inference_dir) |
|
print(f"Changed working directory to: {os.getcwd()}") |
|
except FileNotFoundError: |
|
print(f"Directory not found: {inference_dir}") |
|
exit(1) |
|
|
|
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer')) |
|
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec')) |
|
|
|
import numpy as np |
|
import json |
|
import argparse |
|
from omegaconf import OmegaConf |
|
import torchaudio |
|
from torchaudio.transforms import Resample |
|
import soundfile as sf |
|
from tqdm import tqdm |
|
from einops import rearrange |
|
from codecmanipulator import CodecManipulator |
|
from mmtokenizer import _MMSentencePieceTokenizer |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList |
|
import glob |
|
import time |
|
import copy |
|
from collections import Counter |
|
from models.soundstream_hubert_new import SoundStream |
|
|
|
|
|
|
|
|
|
device = "cuda:0" |
|
|
|
print("Loading model...") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"m-a-p/YuE-s1-7B-anneal-en-cot", |
|
torch_dtype=torch.float16, |
|
attn_implementation="flash_attention_2", |
|
).to(device) |
|
model.eval() |
|
print("Model loaded.") |
|
|
|
basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml' |
|
resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth' |
|
|
|
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model") |
|
codectool = CodecManipulator("xcodec", 0, 1) |
|
model_config = OmegaConf.load(basic_model_config) |
|
|
|
|
|
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device) |
|
parameter_dict = torch.load(resume_path, map_location='cpu') |
|
codec_model.load_state_dict(parameter_dict['codec_model']) |
|
codec_model.eval() |
|
print("Codec model loaded.") |
|
|
|
|
|
|
|
|
|
class BlockTokenRangeProcessor(LogitsProcessor): |
|
def __init__(self, start_id, end_id): |
|
self.blocked_token_ids = list(range(start_id, end_id)) |
|
|
|
def __call__(self, input_ids, scores): |
|
scores[:, self.blocked_token_ids] = -float("inf") |
|
return scores |
|
|
|
def load_audio_mono(filepath, sampling_rate=16000): |
|
audio, sr = torchaudio.load(filepath) |
|
|
|
audio = torch.mean(audio, dim=0, keepdim=True) |
|
|
|
if sr != sampling_rate: |
|
resampler = Resample(orig_freq=sr, new_freq=sampling_rate) |
|
audio = resampler(audio) |
|
return audio |
|
|
|
def split_lyrics(lyrics: str): |
|
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)" |
|
segments = re.findall(pattern, lyrics, re.DOTALL) |
|
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments] |
|
return structured_lyrics |
|
|
|
|
|
|
|
|
|
@spaces.GPU(duration=175) |
|
def requires_cuda_generation(input_ids, max_new_tokens, top_p, temperature, repetition_penalty, guidance_scale): |
|
""" |
|
Performs the CUDA-intensive generation using the language model. |
|
""" |
|
with torch.inference_mode(), torch.autocast(device_type='cuda', dtype=torch.float16): |
|
output_seq = model.generate( |
|
input_ids=input_ids, |
|
max_new_tokens=max_new_tokens, |
|
min_new_tokens=100, |
|
do_sample=True, |
|
top_p=top_p, |
|
temperature=temperature, |
|
repetition_penalty=repetition_penalty, |
|
eos_token_id=mmtokenizer.eoa, |
|
pad_token_id=mmtokenizer.eoa, |
|
logits_processor=LogitsProcessorList([ |
|
BlockTokenRangeProcessor(0, 32002), |
|
BlockTokenRangeProcessor(32016, 32016) |
|
]), |
|
guidance_scale=guidance_scale, |
|
use_cache=True |
|
) |
|
|
|
if output_seq[0][-1].item() != mmtokenizer.eoa: |
|
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device) |
|
output_seq = torch.cat((output_seq, tensor_eoa), dim=1) |
|
return output_seq |
|
|
|
@spaces.GPU(duration=15) |
|
def requires_cuda_decode(codec_result): |
|
""" |
|
Uses the codec model on the GPU to decode a given numpy array of codec IDs |
|
into a waveform tensor. |
|
""" |
|
with torch.no_grad(): |
|
|
|
codec_tensor = torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long) |
|
|
|
codec_tensor = codec_tensor.unsqueeze(0).permute(1, 0, 2).to(device) |
|
decoded_waveform = codec_model.decode(codec_tensor) |
|
return decoded_waveform.cpu().squeeze(0) |
|
|
|
def save_audio(wav: torch.Tensor, sample_rate: int, rescale: bool = False): |
|
""" |
|
Convert a waveform tensor to a numpy array (16-bit PCM) without writing to disk. |
|
""" |
|
limit = 0.99 |
|
max_val = wav.abs().max() |
|
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit) |
|
|
|
return sample_rate, (wav.numpy() * 32767).astype(np.int16) |
|
|
|
|
|
|
|
|
|
def generate_music( |
|
genre_txt=None, |
|
lyrics_txt=None, |
|
run_n_segments=2, |
|
max_new_tokens=23, |
|
use_audio_prompt=False, |
|
audio_prompt_path="", |
|
prompt_start_time=0.0, |
|
prompt_end_time=30.0, |
|
cuda_idx=0, |
|
rescale=False, |
|
): |
|
""" |
|
Generates music based on genre and lyrics (and optionally an audio prompt). |
|
The heavy CUDA computations are performed in helper functions. |
|
All intermediate data is kept in memory. |
|
""" |
|
if use_audio_prompt and not audio_prompt_path: |
|
raise FileNotFoundError("Please provide an audio prompt file when 'Use Audio Prompt' is enabled!") |
|
|
|
|
|
max_new_tokens = max_new_tokens * 100 |
|
|
|
|
|
genres = genre_txt.strip() |
|
lyrics_segments = split_lyrics(lyrics_txt + "\n") |
|
full_lyrics = "\n".join(lyrics_segments) |
|
|
|
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"] |
|
|
|
prompt_texts += lyrics_segments |
|
|
|
random_id = uuid.uuid4() |
|
raw_output = None |
|
|
|
|
|
top_p = 0.93 |
|
temperature = 1.0 |
|
repetition_penalty = 1.2 |
|
start_of_segment = mmtokenizer.tokenize('[start_of_segment]') |
|
end_of_segment = mmtokenizer.tokenize('[end_of_segment]') |
|
|
|
|
|
run_n_segments = min(run_n_segments + 1, len(prompt_texts)) |
|
|
|
print("Starting generation for segments:") |
|
print(list(enumerate(tqdm(prompt_texts[:run_n_segments])))) |
|
|
|
|
|
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])): |
|
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '') |
|
|
|
guidance_scale = 1.5 if i <= 1 else 1.2 |
|
|
|
|
|
if i == 0: |
|
continue |
|
|
|
if i == 1: |
|
|
|
if use_audio_prompt: |
|
audio_prompt = load_audio_mono(audio_prompt_path) |
|
audio_prompt = audio_prompt.unsqueeze(0) |
|
with torch.no_grad(): |
|
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5) |
|
raw_codes = raw_codes.transpose(0, 1) |
|
raw_codes = raw_codes.cpu().numpy().astype(np.int16) |
|
code_ids = codectool.npy2ids(raw_codes[0]) |
|
|
|
audio_prompt_codec = code_ids[int(prompt_start_time * 50): int(prompt_end_time * 50)] |
|
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa] |
|
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]") |
|
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids |
|
else: |
|
head_id = mmtokenizer.tokenize(prompt_texts[0]) |
|
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids |
|
else: |
|
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids |
|
|
|
|
|
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device) |
|
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if (i > 1 and raw_output is not None) else prompt_ids |
|
|
|
|
|
max_context = 16384 - max_new_tokens - 1 |
|
if input_ids.shape[-1] > max_context: |
|
print( |
|
f'Section {i}: input length {input_ids.shape[-1]} exceeds context length {max_context}. Using last {max_context} tokens.' |
|
) |
|
input_ids = input_ids[:, -max_context:] |
|
|
|
|
|
output_seq = requires_cuda_generation( |
|
input_ids, |
|
max_new_tokens, |
|
top_p, |
|
temperature, |
|
repetition_penalty, |
|
guidance_scale |
|
) |
|
|
|
|
|
if i > 1: |
|
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1) |
|
else: |
|
raw_output = output_seq |
|
print(f"Accumulated output length: {raw_output.shape[-1]} tokens") |
|
|
|
|
|
ids = raw_output[0].cpu().numpy() |
|
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist() |
|
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist() |
|
if len(soa_idx) != len(eoa_idx): |
|
raise ValueError(f"Invalid pairs of soa and eoa: Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}") |
|
|
|
vocals_list = [] |
|
instrumentals_list = [] |
|
|
|
range_begin = 1 if use_audio_prompt else 0 |
|
for i in range(range_begin, len(soa_idx)): |
|
codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]] |
|
if codec_ids[0] == 32016: |
|
codec_ids = codec_ids[1:] |
|
|
|
codec_ids = codec_ids[:2 * (len(codec_ids) // 2)] |
|
reshaped = rearrange(codec_ids, "(n b) -> b n", b=2) |
|
vocals_ids = codectool.ids2npy(reshaped[0]) |
|
instrumentals_ids = codectool.ids2npy(reshaped[1]) |
|
vocals_list.append(vocals_ids) |
|
instrumentals_list.append(instrumentals_ids) |
|
|
|
|
|
vocals_codec = np.concatenate(vocals_list, axis=1) |
|
instrumentals_codec = np.concatenate(instrumentals_list, axis=1) |
|
|
|
print("Decoding audio on GPU...") |
|
|
|
|
|
vocal_waveform = requires_cuda_decode(vocals_codec) |
|
instrumental_waveform = requires_cuda_decode(instrumentals_codec) |
|
|
|
|
|
mixed_waveform = (vocal_waveform + instrumental_waveform) / 1.0 |
|
|
|
|
|
sample_rate = 16000 |
|
mixed_audio = save_audio(mixed_waveform, sample_rate, rescale) |
|
vocal_audio = save_audio(vocal_waveform, sample_rate, rescale) |
|
instrumental_audio = save_audio(instrumental_waveform, sample_rate, rescale) |
|
return mixed_audio, vocal_audio, instrumental_audio |
|
|
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Column(): |
|
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation") |
|
gr.HTML(""" |
|
<div style="display:flex;column-gap:4px;"> |
|
<a href="https://github.com/multimodal-art-projection/YuE"> |
|
<img src='https://img.shields.io/badge/GitHub-Repo-blue'> |
|
</a> |
|
<a href="https://map-yue.github.io"> |
|
<img src='https://img.shields.io/badge/Project-Page-green'> |
|
</a> |
|
<a href="https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo?duplicate=true"> |
|
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space"> |
|
</a> |
|
</div> |
|
""") |
|
with gr.Row(): |
|
with gr.Column(): |
|
genre_txt = gr.Textbox(label="Genre") |
|
lyrics_txt = gr.Textbox(label="Lyrics") |
|
use_audio_prompt = gr.Checkbox(label="Use Audio Prompt?", value=False) |
|
audio_prompt_input = gr.Audio(type="filepath", label="Audio Prompt (Optional)") |
|
with gr.Column(): |
|
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True) |
|
max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=15, interactive=True) |
|
submit_btn = gr.Button("Submit") |
|
music_out = gr.Audio(label="Mixed Audio Result") |
|
with gr.Accordion(label="Vocal and Instrumental Result", open=False): |
|
vocal_out = gr.Audio(label="Vocal Audio") |
|
instrumental_out = gr.Audio(label="Instrumental Audio") |
|
gr.Markdown("## Call for Contributions\nIf you find this space interesting please feel free to contribute.") |
|
|
|
submit_btn.click( |
|
fn=generate_music, |
|
inputs=[ |
|
genre_txt, |
|
lyrics_txt, |
|
num_segments, |
|
max_new_tokens, |
|
use_audio_prompt, |
|
audio_prompt_input, |
|
], |
|
outputs=[music_out, vocal_out, instrumental_out] |
|
) |
|
|
|
gr.Examples( |
|
examples=[ |
|
[ |
|
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male", |
|
"""[verse] |
|
Woke up in the morning, sun is shining bright |
|
Chasing all my dreams, gotta get my mind right |
|
City lights are fading, but my vision's clear |
|
Got my team beside me, no room for fear |
|
|
|
[chorus] |
|
Walking through the streets, beats inside my head |
|
Every step I take, closer to the bread |
|
People passing by, they don't understand |
|
Building up my future with my own two hands |
|
""" |
|
], |
|
[ |
|
"Bass Metalcore Thrash Metal Furious bright vocal male Angry aggressive vocal Guitar", |
|
"""[verse] |
|
Step back cause I'll ignite |
|
Won't quit without a fight |
|
No escape, gear up, it's a fierce fight |
|
Brace up, raise your hands up and light |
|
Fear the might. Step back cause I'll ignite |
|
Won't back down without a fight |
|
It keeps going and going, the heat is on. |
|
|
|
[chorus] |
|
Hot flame. Hot flame. |
|
Still here, still holding aim |
|
I don't care if I'm bright or dim: nah. |
|
I've made it clear, I'll make it again |
|
All I want is my crew and my gain. |
|
I'm feeling wild, got a bit of rebel style. |
|
Locked inside my mind, hot flame. |
|
""" |
|
] |
|
], |
|
inputs=[genre_txt, lyrics_txt], |
|
outputs=[music_out, vocal_out, instrumental_out], |
|
cache_examples=True, |
|
cache_mode="eager", |
|
fn=generate_music |
|
) |
|
|
|
demo.queue().launch(show_error=True) |
|
|