KingNish's picture
Upload ./RepCodec/examples/data2vec_audio.py with huggingface_hub
f5135ef verified
raw
history blame
18.1 kB
# Copyright (c) ByteDance, Inc. and its affiliates.
# Copyright (c) Chutong Meng
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# Based on fairseq (https://github.com/facebookresearch/fairseq)
# ref: https://github.com/facebookresearch/fairseq/blob/main/examples/data2vec/models/data2vec_audio.py
import logging
import math
from dataclasses import dataclass, field
from typing import Optional
from omegaconf import II
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from fairseq.modules import EMAModule, EMAModuleConfig
from fairseq.data.data_utils import compute_mask_indices
from fairseq.models import BaseFairseqModel, register_model
from fairseq.models.wav2vec import (
ConvFeatureExtractionModel,
Wav2Vec2Config,
TransformerEncoder,
)
from fairseq.modules import (
GradMultiply,
LayerNorm,
)
from fairseq.utils import index_put
logger = logging.getLogger(__name__)
@dataclass
class Data2VecAudioConfig(Wav2Vec2Config):
loss_beta: float = field(
default=0, metadata={"help": "beta for smooth l1 loss. 0 means use l2 loss"}
)
loss_scale: Optional[float] = field(
default=None,
metadata={
"help": "scale the reconstruction loss by this constant. if None then scales by 1/sqrt(dim)"
},
)
average_top_k_layers: int = field(
default=8, metadata={"help": "how many layers to average"}
)
layer_norm_target_layer: bool = False
instance_norm_target_layer: bool = False
instance_norm_targets: bool = False
layer_norm_targets: bool = False
batch_norm_target_layer: bool = False
group_norm_target_layer: bool = False
ema_decay: float = field(default=0.999, metadata={"help": "initial ema decay rate"})
ema_end_decay: float = field(
default=0.9999, metadata={"help": "final ema decay rate"}
)
# when to finish annealing ema decay rate
ema_anneal_end_step: int = II("optimization.max_update")
ema_transformer_only: bool = field(
default=True,
metadata={"help": "whether to momentum update only the transformer"},
)
ema_layers_only: bool = field(
default=True,
metadata={"help": "whether to momentum update only the transformer layers"},
)
max_update: int = II("optimization.max_update")
min_target_var: float = field(
default=0.1, metadata={"help": "stop training if target var falls below this"}
)
min_pred_var: float = field(
default=0.01,
metadata={"help": "stop training if prediction var falls below this"},
)
def get_annealed_rate(start, end, curr_step, total_steps):
r = end - start
pct_remaining = 1 - curr_step / total_steps
return end - r * pct_remaining
@register_model("data2vec_audio", dataclass=Data2VecAudioConfig)
class Data2VecAudioModel(BaseFairseqModel):
def __init__(self, cfg: Data2VecAudioConfig):
super().__init__()
self.cfg = cfg
feature_enc_layers = eval(cfg.conv_feature_layers)
self.extractor_embed = feature_enc_layers[-1][0]
self.ema = None
self.embed = cfg.encoder_embed_dim
self.average_top_k_layers = cfg.average_top_k_layers
self.loss_beta = cfg.loss_beta
self.loss_scale = cfg.loss_scale
self.feature_extractor = ConvFeatureExtractionModel(
conv_layers=feature_enc_layers,
dropout=0.0,
mode=cfg.extractor_mode,
conv_bias=cfg.conv_bias,
)
self.post_extract_proj = nn.Linear(self.extractor_embed, cfg.encoder_embed_dim)
self.mask_prob = cfg.mask_prob
self.mask_selection = cfg.mask_selection
self.mask_other = cfg.mask_other
self.mask_length = cfg.mask_length
self.no_mask_overlap = cfg.no_mask_overlap
self.mask_min_space = cfg.mask_min_space
self.mask_channel_prob = cfg.mask_channel_prob
self.mask_channel_before = cfg.mask_channel_before
self.mask_channel_selection = cfg.mask_channel_selection
self.mask_channel_other = cfg.mask_channel_other
self.mask_channel_length = cfg.mask_channel_length
self.no_mask_channel_overlap = cfg.no_mask_channel_overlap
self.mask_channel_min_space = cfg.mask_channel_min_space
self.dropout_input = nn.Dropout(cfg.dropout_input)
self.dropout_features = nn.Dropout(cfg.dropout_features)
self.feature_grad_mult = cfg.feature_grad_mult
self.mask_emb = nn.Parameter(
torch.FloatTensor(cfg.encoder_embed_dim).uniform_()
)
self.encoder = TransformerEncoder(cfg)
self.layer_norm = LayerNorm(self.extractor_embed)
self.final_proj = nn.Linear(self.embed, self.embed)
self.num_updates = 0
def make_ema_teacher(self):
ema_config = EMAModuleConfig(
ema_decay=self.cfg.ema_decay,
ema_fp32=True,
)
skip_keys = set()
if self.cfg.ema_layers_only:
self.cfg.ema_transformer_only = True
for k, _ in self.encoder.pos_conv.named_parameters():
skip_keys.add(f"pos_conv.{k}")
self.ema = EMAModule(
self.encoder if self.cfg.ema_transformer_only else self,
ema_config,
skip_keys=skip_keys,
)
def set_num_updates(self, num_updates):
super().set_num_updates(num_updates)
if self.ema is None and self.final_proj is not None:
logger.info(f"making ema teacher")
self.make_ema_teacher()
elif self.training and self.ema is not None:
if self.cfg.ema_decay != self.cfg.ema_end_decay:
if num_updates >= self.cfg.ema_anneal_end_step:
decay = self.cfg.ema_end_decay
else:
decay = get_annealed_rate(
self.cfg.ema_decay,
self.cfg.ema_end_decay,
num_updates,
self.cfg.ema_anneal_end_step,
)
self.ema.set_decay(decay)
if self.ema.get_decay() < 1:
self.ema.step(self.encoder if self.cfg.ema_transformer_only else self)
self.num_updates = num_updates
def state_dict(self, destination=None, prefix="", keep_vars=False):
state = super().state_dict(destination, prefix, keep_vars)
if self.ema is not None:
state[prefix + "_ema"] = self.ema.fp32_params
return state
def _load_from_state_dict(self, state_dict, prefix, *args, **kwargs):
if self.ema is not None:
k = prefix + "_ema"
assert k in state_dict
self.ema.restore(state_dict[k], True)
del state_dict[k]
return super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
@classmethod
def build_model(cls, cfg: Data2VecAudioConfig, task=None):
"""Build a new model instance."""
return cls(cfg)
def apply_mask(
self,
x,
padding_mask,
mask_indices=None,
mask_channel_indices=None,
):
B, T, C = x.shape
if self.mask_channel_prob > 0 and self.mask_channel_before:
mask_channel_indices = compute_mask_indices(
(B, C),
None,
self.mask_channel_prob,
self.mask_channel_length,
self.mask_channel_selection,
self.mask_channel_other,
no_overlap=self.no_mask_channel_overlap,
min_space=self.mask_channel_min_space,
)
mask_channel_indices = (
torch.from_numpy(mask_channel_indices)
.to(x.device)
.unsqueeze(1)
.expand(-1, T, -1)
)
x[mask_channel_indices] = 0
if self.mask_prob > 0:
if mask_indices is None:
mask_indices = compute_mask_indices(
(B, T),
padding_mask,
self.mask_prob,
self.mask_length,
self.mask_selection,
self.mask_other,
min_masks=1,
no_overlap=self.no_mask_overlap,
min_space=self.mask_min_space,
require_same_masks=self.cfg.require_same_masks,
mask_dropout=self.cfg.mask_dropout,
)
mask_indices = torch.from_numpy(mask_indices).to(x.device)
x = index_put(x, mask_indices, self.mask_emb)
else:
mask_indices = None
if self.mask_channel_prob > 0 and not self.mask_channel_before:
if mask_channel_indices is None:
mask_channel_indices = compute_mask_indices(
(B, C),
None,
self.mask_channel_prob,
self.mask_channel_length,
self.mask_channel_selection,
self.mask_channel_other,
no_overlap=self.no_mask_channel_overlap,
min_space=self.mask_channel_min_space,
)
mask_channel_indices = (
torch.from_numpy(mask_channel_indices)
.to(x.device)
.unsqueeze(1)
.expand(-1, T, -1)
)
x = index_put(x, mask_channel_indices, 0)
return x, mask_indices
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
"""
Computes the output length of the convolutional layers
"""
def _conv_out_length(input_length, kernel_size, stride):
return torch.floor((input_length - kernel_size) / stride + 1)
conv_cfg_list = eval(self.cfg.conv_feature_layers)
for i in range(len(conv_cfg_list)):
input_lengths = _conv_out_length(
input_lengths, conv_cfg_list[i][1], conv_cfg_list[i][2]
)
return input_lengths.to(torch.long)
def forward(
self,
source,
padding_mask=None,
mask=True,
features_only=False,
layer=None,
mask_indices=None,
mask_channel_indices=None,
padding_count=None,
):
features = source
if self.feature_grad_mult > 0:
features = self.feature_extractor(features)
if self.feature_grad_mult != 1.0:
features = GradMultiply.apply(features, self.feature_grad_mult)
else:
with torch.no_grad():
features = self.feature_extractor(features)
features = features.transpose(1, 2)
features = self.layer_norm(features)
orig_padding_mask = padding_mask
if padding_mask is not None and padding_mask.any():
input_lengths = (1 - padding_mask.long()).sum(-1)
# apply conv formula to get real output_lengths
output_lengths = self._get_feat_extract_output_lengths(input_lengths)
padding_mask = torch.zeros(
features.shape[:2], dtype=features.dtype, device=features.device
)
# these two operations makes sure that all values
# before the output lengths indices are attended to
padding_mask[
(
torch.arange(padding_mask.shape[0], device=padding_mask.device),
output_lengths - 1,
)
] = 1
padding_mask = (1 - padding_mask.flip([-1]).cumsum(-1).flip([-1])).bool()
else:
padding_mask = None
if self.post_extract_proj is not None:
features = self.post_extract_proj(features)
pre_encoder_features = None
if self.cfg.ema_transformer_only:
pre_encoder_features = features.clone()
features = self.dropout_input(features)
if mask:
x, mask_indices = self.apply_mask(
features,
padding_mask,
mask_indices=mask_indices,
mask_channel_indices=mask_channel_indices,
)
else:
x = features
mask_indices = None
x, layer_results = self.encoder(
x,
padding_mask=padding_mask,
layer=layer,
)
if features_only:
return {
"x": x,
"padding_mask": padding_mask,
"layer_results": layer_results,
}
result = {
"losses": {},
}
with torch.no_grad():
self.ema.model.eval()
if self.cfg.ema_transformer_only:
y, layer_results = self.ema.model.extract_features(
pre_encoder_features,
padding_mask=padding_mask,
min_layer=self.cfg.encoder_layers - self.average_top_k_layers,
)
y = {
"x": y,
"padding_mask": padding_mask,
"layer_results": layer_results,
}
else:
y = self.ema.model.extract_features(
source=source,
padding_mask=orig_padding_mask,
mask=False,
)
target_layer_results = [l[2] for l in y["layer_results"]]
permuted = False
if self.cfg.instance_norm_target_layer or self.cfg.batch_norm_target_layer:
target_layer_results = [
tl.permute(1, 2, 0) for tl in target_layer_results # TBC -> BCT
]
permuted = True
if self.cfg.batch_norm_target_layer:
target_layer_results = [
F.batch_norm(
tl.float(), running_mean=None, running_var=None, training=True
)
for tl in target_layer_results
]
if self.cfg.instance_norm_target_layer:
target_layer_results = [
F.instance_norm(tl.float()) for tl in target_layer_results
]
if permuted:
target_layer_results = [
tl.transpose(1, 2) for tl in target_layer_results # BCT -> BTC
]
if self.cfg.group_norm_target_layer:
target_layer_results = [
F.layer_norm(tl.float(), tl.shape[-2:])
for tl in target_layer_results
]
if self.cfg.layer_norm_target_layer:
target_layer_results = [
F.layer_norm(tl.float(), tl.shape[-1:])
for tl in target_layer_results
]
y = sum(target_layer_results) / len(target_layer_results)
if self.cfg.layer_norm_targets:
y = F.layer_norm(y.float(), y.shape[-1:])
if self.cfg.instance_norm_targets:
y = F.instance_norm(y.float().transpose(1, 2)).transpose(1, 2)
if not permuted:
y = y.transpose(0, 1)
y = y[mask_indices]
x = x[mask_indices]
x = self.final_proj(x)
sz = x.size(-1)
if self.loss_beta == 0:
loss = F.mse_loss(x.float(), y.float(), reduction="none").sum(dim=-1)
else:
loss = F.smooth_l1_loss(
x.float(), y.float(), reduction="none", beta=self.loss_beta
).sum(dim=-1)
if self.loss_scale is not None:
scale = self.loss_scale
else:
scale = 1 / math.sqrt(sz)
result["losses"]["regression"] = loss.sum() * scale
if "sample_size" not in result:
result["sample_size"] = loss.numel()
with torch.no_grad():
result["target_var"] = self.compute_var(y)
result["pred_var"] = self.compute_var(x.float())
if self.num_updates > 5000 and result["target_var"] < self.cfg.min_target_var:
logger.error(
f"target var is {result['target_var'].item()} < {self.cfg.min_target_var}, exiting"
)
raise Exception(
f"target var is {result['target_var'].item()} < {self.cfg.min_target_var}, exiting"
)
if self.num_updates > 5000 and result["pred_var"] < self.cfg.min_pred_var:
logger.error(
f"pred var is {result['pred_var'].item()} < {self.cfg.min_pred_var}, exiting"
)
raise Exception(
f"pred var is {result['pred_var'].item()} < {self.cfg.min_pred_var}, exiting"
)
if self.ema is not None:
result["ema_decay"] = self.ema.get_decay() * 1000
return result
@staticmethod
def compute_var(y):
y = y.view(-1, y.size(-1))
if dist.is_initialized():
zc = torch.tensor(y.size(0)).cuda()
zs = y.sum(dim=0)
zss = (y ** 2).sum(dim=0)
dist.all_reduce(zc)
dist.all_reduce(zs)
dist.all_reduce(zss)
var = zss / (zc - 1) - (zs ** 2) / (zc * (zc - 1))
return torch.sqrt(var + 1e-6).mean()
else:
return torch.sqrt(y.var(dim=0) + 1e-6).mean()
def extract_features(
self, source, padding_mask, mask=False, layer=None
):
res = self.forward(
source,
padding_mask,
mask=mask,
features_only=True,
layer=layer,
)
return res
def remove_pretraining_modules(self, last_layer=None):
self.final_proj = None
self.ema = None
if last_layer is not None:
self.encoder.layers = nn.ModuleList(
l for i, l in enumerate(self.encoder.layers) if i <= last_layer
)