Upload ./RepCodec/examples/data2vec_audio.py with huggingface_hub
Browse files
RepCodec/examples/data2vec_audio.py
ADDED
@@ -0,0 +1,541 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) ByteDance, Inc. and its affiliates.
|
2 |
+
# Copyright (c) Chutong Meng
|
3 |
+
#
|
4 |
+
# This source code is licensed under the MIT license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
# Based on fairseq (https://github.com/facebookresearch/fairseq)
|
7 |
+
|
8 |
+
# ref: https://github.com/facebookresearch/fairseq/blob/main/examples/data2vec/models/data2vec_audio.py
|
9 |
+
|
10 |
+
import logging
|
11 |
+
import math
|
12 |
+
from dataclasses import dataclass, field
|
13 |
+
from typing import Optional
|
14 |
+
|
15 |
+
from omegaconf import II
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torch.nn.functional as F
|
20 |
+
import torch.distributed as dist
|
21 |
+
|
22 |
+
from fairseq.modules import EMAModule, EMAModuleConfig
|
23 |
+
from fairseq.data.data_utils import compute_mask_indices
|
24 |
+
from fairseq.models import BaseFairseqModel, register_model
|
25 |
+
from fairseq.models.wav2vec import (
|
26 |
+
ConvFeatureExtractionModel,
|
27 |
+
Wav2Vec2Config,
|
28 |
+
TransformerEncoder,
|
29 |
+
)
|
30 |
+
from fairseq.modules import (
|
31 |
+
GradMultiply,
|
32 |
+
LayerNorm,
|
33 |
+
)
|
34 |
+
from fairseq.utils import index_put
|
35 |
+
|
36 |
+
|
37 |
+
logger = logging.getLogger(__name__)
|
38 |
+
|
39 |
+
|
40 |
+
@dataclass
|
41 |
+
class Data2VecAudioConfig(Wav2Vec2Config):
|
42 |
+
|
43 |
+
loss_beta: float = field(
|
44 |
+
default=0, metadata={"help": "beta for smooth l1 loss. 0 means use l2 loss"}
|
45 |
+
)
|
46 |
+
loss_scale: Optional[float] = field(
|
47 |
+
default=None,
|
48 |
+
metadata={
|
49 |
+
"help": "scale the reconstruction loss by this constant. if None then scales by 1/sqrt(dim)"
|
50 |
+
},
|
51 |
+
)
|
52 |
+
average_top_k_layers: int = field(
|
53 |
+
default=8, metadata={"help": "how many layers to average"}
|
54 |
+
)
|
55 |
+
|
56 |
+
layer_norm_target_layer: bool = False
|
57 |
+
instance_norm_target_layer: bool = False
|
58 |
+
instance_norm_targets: bool = False
|
59 |
+
layer_norm_targets: bool = False
|
60 |
+
batch_norm_target_layer: bool = False
|
61 |
+
group_norm_target_layer: bool = False
|
62 |
+
|
63 |
+
ema_decay: float = field(default=0.999, metadata={"help": "initial ema decay rate"})
|
64 |
+
ema_end_decay: float = field(
|
65 |
+
default=0.9999, metadata={"help": "final ema decay rate"}
|
66 |
+
)
|
67 |
+
|
68 |
+
# when to finish annealing ema decay rate
|
69 |
+
ema_anneal_end_step: int = II("optimization.max_update")
|
70 |
+
|
71 |
+
ema_transformer_only: bool = field(
|
72 |
+
default=True,
|
73 |
+
metadata={"help": "whether to momentum update only the transformer"},
|
74 |
+
)
|
75 |
+
ema_layers_only: bool = field(
|
76 |
+
default=True,
|
77 |
+
metadata={"help": "whether to momentum update only the transformer layers"},
|
78 |
+
)
|
79 |
+
|
80 |
+
max_update: int = II("optimization.max_update")
|
81 |
+
|
82 |
+
min_target_var: float = field(
|
83 |
+
default=0.1, metadata={"help": "stop training if target var falls below this"}
|
84 |
+
)
|
85 |
+
min_pred_var: float = field(
|
86 |
+
default=0.01,
|
87 |
+
metadata={"help": "stop training if prediction var falls below this"},
|
88 |
+
)
|
89 |
+
|
90 |
+
|
91 |
+
def get_annealed_rate(start, end, curr_step, total_steps):
|
92 |
+
r = end - start
|
93 |
+
pct_remaining = 1 - curr_step / total_steps
|
94 |
+
return end - r * pct_remaining
|
95 |
+
|
96 |
+
|
97 |
+
@register_model("data2vec_audio", dataclass=Data2VecAudioConfig)
|
98 |
+
class Data2VecAudioModel(BaseFairseqModel):
|
99 |
+
def __init__(self, cfg: Data2VecAudioConfig):
|
100 |
+
super().__init__()
|
101 |
+
self.cfg = cfg
|
102 |
+
|
103 |
+
feature_enc_layers = eval(cfg.conv_feature_layers)
|
104 |
+
self.extractor_embed = feature_enc_layers[-1][0]
|
105 |
+
|
106 |
+
self.ema = None
|
107 |
+
self.embed = cfg.encoder_embed_dim
|
108 |
+
|
109 |
+
self.average_top_k_layers = cfg.average_top_k_layers
|
110 |
+
self.loss_beta = cfg.loss_beta
|
111 |
+
self.loss_scale = cfg.loss_scale
|
112 |
+
|
113 |
+
self.feature_extractor = ConvFeatureExtractionModel(
|
114 |
+
conv_layers=feature_enc_layers,
|
115 |
+
dropout=0.0,
|
116 |
+
mode=cfg.extractor_mode,
|
117 |
+
conv_bias=cfg.conv_bias,
|
118 |
+
)
|
119 |
+
|
120 |
+
self.post_extract_proj = nn.Linear(self.extractor_embed, cfg.encoder_embed_dim)
|
121 |
+
|
122 |
+
self.mask_prob = cfg.mask_prob
|
123 |
+
self.mask_selection = cfg.mask_selection
|
124 |
+
self.mask_other = cfg.mask_other
|
125 |
+
self.mask_length = cfg.mask_length
|
126 |
+
self.no_mask_overlap = cfg.no_mask_overlap
|
127 |
+
self.mask_min_space = cfg.mask_min_space
|
128 |
+
|
129 |
+
self.mask_channel_prob = cfg.mask_channel_prob
|
130 |
+
self.mask_channel_before = cfg.mask_channel_before
|
131 |
+
self.mask_channel_selection = cfg.mask_channel_selection
|
132 |
+
self.mask_channel_other = cfg.mask_channel_other
|
133 |
+
self.mask_channel_length = cfg.mask_channel_length
|
134 |
+
self.no_mask_channel_overlap = cfg.no_mask_channel_overlap
|
135 |
+
self.mask_channel_min_space = cfg.mask_channel_min_space
|
136 |
+
|
137 |
+
self.dropout_input = nn.Dropout(cfg.dropout_input)
|
138 |
+
self.dropout_features = nn.Dropout(cfg.dropout_features)
|
139 |
+
|
140 |
+
self.feature_grad_mult = cfg.feature_grad_mult
|
141 |
+
|
142 |
+
self.mask_emb = nn.Parameter(
|
143 |
+
torch.FloatTensor(cfg.encoder_embed_dim).uniform_()
|
144 |
+
)
|
145 |
+
|
146 |
+
self.encoder = TransformerEncoder(cfg)
|
147 |
+
self.layer_norm = LayerNorm(self.extractor_embed)
|
148 |
+
|
149 |
+
self.final_proj = nn.Linear(self.embed, self.embed)
|
150 |
+
|
151 |
+
self.num_updates = 0
|
152 |
+
|
153 |
+
def make_ema_teacher(self):
|
154 |
+
ema_config = EMAModuleConfig(
|
155 |
+
ema_decay=self.cfg.ema_decay,
|
156 |
+
ema_fp32=True,
|
157 |
+
)
|
158 |
+
skip_keys = set()
|
159 |
+
if self.cfg.ema_layers_only:
|
160 |
+
self.cfg.ema_transformer_only = True
|
161 |
+
for k, _ in self.encoder.pos_conv.named_parameters():
|
162 |
+
skip_keys.add(f"pos_conv.{k}")
|
163 |
+
|
164 |
+
self.ema = EMAModule(
|
165 |
+
self.encoder if self.cfg.ema_transformer_only else self,
|
166 |
+
ema_config,
|
167 |
+
skip_keys=skip_keys,
|
168 |
+
)
|
169 |
+
|
170 |
+
def set_num_updates(self, num_updates):
|
171 |
+
super().set_num_updates(num_updates)
|
172 |
+
|
173 |
+
if self.ema is None and self.final_proj is not None:
|
174 |
+
logger.info(f"making ema teacher")
|
175 |
+
self.make_ema_teacher()
|
176 |
+
elif self.training and self.ema is not None:
|
177 |
+
if self.cfg.ema_decay != self.cfg.ema_end_decay:
|
178 |
+
if num_updates >= self.cfg.ema_anneal_end_step:
|
179 |
+
decay = self.cfg.ema_end_decay
|
180 |
+
else:
|
181 |
+
decay = get_annealed_rate(
|
182 |
+
self.cfg.ema_decay,
|
183 |
+
self.cfg.ema_end_decay,
|
184 |
+
num_updates,
|
185 |
+
self.cfg.ema_anneal_end_step,
|
186 |
+
)
|
187 |
+
self.ema.set_decay(decay)
|
188 |
+
if self.ema.get_decay() < 1:
|
189 |
+
self.ema.step(self.encoder if self.cfg.ema_transformer_only else self)
|
190 |
+
|
191 |
+
self.num_updates = num_updates
|
192 |
+
|
193 |
+
def state_dict(self, destination=None, prefix="", keep_vars=False):
|
194 |
+
state = super().state_dict(destination, prefix, keep_vars)
|
195 |
+
|
196 |
+
if self.ema is not None:
|
197 |
+
state[prefix + "_ema"] = self.ema.fp32_params
|
198 |
+
|
199 |
+
return state
|
200 |
+
|
201 |
+
def _load_from_state_dict(self, state_dict, prefix, *args, **kwargs):
|
202 |
+
if self.ema is not None:
|
203 |
+
k = prefix + "_ema"
|
204 |
+
assert k in state_dict
|
205 |
+
self.ema.restore(state_dict[k], True)
|
206 |
+
del state_dict[k]
|
207 |
+
return super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
|
208 |
+
|
209 |
+
@classmethod
|
210 |
+
def build_model(cls, cfg: Data2VecAudioConfig, task=None):
|
211 |
+
"""Build a new model instance."""
|
212 |
+
|
213 |
+
return cls(cfg)
|
214 |
+
|
215 |
+
def apply_mask(
|
216 |
+
self,
|
217 |
+
x,
|
218 |
+
padding_mask,
|
219 |
+
mask_indices=None,
|
220 |
+
mask_channel_indices=None,
|
221 |
+
):
|
222 |
+
B, T, C = x.shape
|
223 |
+
|
224 |
+
if self.mask_channel_prob > 0 and self.mask_channel_before:
|
225 |
+
mask_channel_indices = compute_mask_indices(
|
226 |
+
(B, C),
|
227 |
+
None,
|
228 |
+
self.mask_channel_prob,
|
229 |
+
self.mask_channel_length,
|
230 |
+
self.mask_channel_selection,
|
231 |
+
self.mask_channel_other,
|
232 |
+
no_overlap=self.no_mask_channel_overlap,
|
233 |
+
min_space=self.mask_channel_min_space,
|
234 |
+
)
|
235 |
+
mask_channel_indices = (
|
236 |
+
torch.from_numpy(mask_channel_indices)
|
237 |
+
.to(x.device)
|
238 |
+
.unsqueeze(1)
|
239 |
+
.expand(-1, T, -1)
|
240 |
+
)
|
241 |
+
x[mask_channel_indices] = 0
|
242 |
+
|
243 |
+
if self.mask_prob > 0:
|
244 |
+
if mask_indices is None:
|
245 |
+
mask_indices = compute_mask_indices(
|
246 |
+
(B, T),
|
247 |
+
padding_mask,
|
248 |
+
self.mask_prob,
|
249 |
+
self.mask_length,
|
250 |
+
self.mask_selection,
|
251 |
+
self.mask_other,
|
252 |
+
min_masks=1,
|
253 |
+
no_overlap=self.no_mask_overlap,
|
254 |
+
min_space=self.mask_min_space,
|
255 |
+
require_same_masks=self.cfg.require_same_masks,
|
256 |
+
mask_dropout=self.cfg.mask_dropout,
|
257 |
+
)
|
258 |
+
mask_indices = torch.from_numpy(mask_indices).to(x.device)
|
259 |
+
x = index_put(x, mask_indices, self.mask_emb)
|
260 |
+
else:
|
261 |
+
mask_indices = None
|
262 |
+
|
263 |
+
if self.mask_channel_prob > 0 and not self.mask_channel_before:
|
264 |
+
if mask_channel_indices is None:
|
265 |
+
mask_channel_indices = compute_mask_indices(
|
266 |
+
(B, C),
|
267 |
+
None,
|
268 |
+
self.mask_channel_prob,
|
269 |
+
self.mask_channel_length,
|
270 |
+
self.mask_channel_selection,
|
271 |
+
self.mask_channel_other,
|
272 |
+
no_overlap=self.no_mask_channel_overlap,
|
273 |
+
min_space=self.mask_channel_min_space,
|
274 |
+
)
|
275 |
+
mask_channel_indices = (
|
276 |
+
torch.from_numpy(mask_channel_indices)
|
277 |
+
.to(x.device)
|
278 |
+
.unsqueeze(1)
|
279 |
+
.expand(-1, T, -1)
|
280 |
+
)
|
281 |
+
x = index_put(x, mask_channel_indices, 0)
|
282 |
+
|
283 |
+
return x, mask_indices
|
284 |
+
|
285 |
+
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
|
286 |
+
"""
|
287 |
+
Computes the output length of the convolutional layers
|
288 |
+
"""
|
289 |
+
|
290 |
+
def _conv_out_length(input_length, kernel_size, stride):
|
291 |
+
return torch.floor((input_length - kernel_size) / stride + 1)
|
292 |
+
|
293 |
+
conv_cfg_list = eval(self.cfg.conv_feature_layers)
|
294 |
+
|
295 |
+
for i in range(len(conv_cfg_list)):
|
296 |
+
input_lengths = _conv_out_length(
|
297 |
+
input_lengths, conv_cfg_list[i][1], conv_cfg_list[i][2]
|
298 |
+
)
|
299 |
+
|
300 |
+
return input_lengths.to(torch.long)
|
301 |
+
|
302 |
+
def forward(
|
303 |
+
self,
|
304 |
+
source,
|
305 |
+
padding_mask=None,
|
306 |
+
mask=True,
|
307 |
+
features_only=False,
|
308 |
+
layer=None,
|
309 |
+
mask_indices=None,
|
310 |
+
mask_channel_indices=None,
|
311 |
+
padding_count=None,
|
312 |
+
):
|
313 |
+
features = source
|
314 |
+
|
315 |
+
if self.feature_grad_mult > 0:
|
316 |
+
features = self.feature_extractor(features)
|
317 |
+
if self.feature_grad_mult != 1.0:
|
318 |
+
features = GradMultiply.apply(features, self.feature_grad_mult)
|
319 |
+
else:
|
320 |
+
with torch.no_grad():
|
321 |
+
features = self.feature_extractor(features)
|
322 |
+
|
323 |
+
features = features.transpose(1, 2)
|
324 |
+
|
325 |
+
features = self.layer_norm(features)
|
326 |
+
|
327 |
+
orig_padding_mask = padding_mask
|
328 |
+
|
329 |
+
if padding_mask is not None and padding_mask.any():
|
330 |
+
input_lengths = (1 - padding_mask.long()).sum(-1)
|
331 |
+
# apply conv formula to get real output_lengths
|
332 |
+
output_lengths = self._get_feat_extract_output_lengths(input_lengths)
|
333 |
+
|
334 |
+
padding_mask = torch.zeros(
|
335 |
+
features.shape[:2], dtype=features.dtype, device=features.device
|
336 |
+
)
|
337 |
+
|
338 |
+
# these two operations makes sure that all values
|
339 |
+
# before the output lengths indices are attended to
|
340 |
+
padding_mask[
|
341 |
+
(
|
342 |
+
torch.arange(padding_mask.shape[0], device=padding_mask.device),
|
343 |
+
output_lengths - 1,
|
344 |
+
)
|
345 |
+
] = 1
|
346 |
+
padding_mask = (1 - padding_mask.flip([-1]).cumsum(-1).flip([-1])).bool()
|
347 |
+
else:
|
348 |
+
padding_mask = None
|
349 |
+
|
350 |
+
if self.post_extract_proj is not None:
|
351 |
+
features = self.post_extract_proj(features)
|
352 |
+
|
353 |
+
pre_encoder_features = None
|
354 |
+
if self.cfg.ema_transformer_only:
|
355 |
+
pre_encoder_features = features.clone()
|
356 |
+
|
357 |
+
features = self.dropout_input(features)
|
358 |
+
|
359 |
+
if mask:
|
360 |
+
x, mask_indices = self.apply_mask(
|
361 |
+
features,
|
362 |
+
padding_mask,
|
363 |
+
mask_indices=mask_indices,
|
364 |
+
mask_channel_indices=mask_channel_indices,
|
365 |
+
)
|
366 |
+
else:
|
367 |
+
x = features
|
368 |
+
mask_indices = None
|
369 |
+
|
370 |
+
x, layer_results = self.encoder(
|
371 |
+
x,
|
372 |
+
padding_mask=padding_mask,
|
373 |
+
layer=layer,
|
374 |
+
)
|
375 |
+
|
376 |
+
if features_only:
|
377 |
+
return {
|
378 |
+
"x": x,
|
379 |
+
"padding_mask": padding_mask,
|
380 |
+
"layer_results": layer_results,
|
381 |
+
}
|
382 |
+
|
383 |
+
result = {
|
384 |
+
"losses": {},
|
385 |
+
}
|
386 |
+
|
387 |
+
with torch.no_grad():
|
388 |
+
self.ema.model.eval()
|
389 |
+
|
390 |
+
if self.cfg.ema_transformer_only:
|
391 |
+
y, layer_results = self.ema.model.extract_features(
|
392 |
+
pre_encoder_features,
|
393 |
+
padding_mask=padding_mask,
|
394 |
+
min_layer=self.cfg.encoder_layers - self.average_top_k_layers,
|
395 |
+
)
|
396 |
+
y = {
|
397 |
+
"x": y,
|
398 |
+
"padding_mask": padding_mask,
|
399 |
+
"layer_results": layer_results,
|
400 |
+
}
|
401 |
+
else:
|
402 |
+
y = self.ema.model.extract_features(
|
403 |
+
source=source,
|
404 |
+
padding_mask=orig_padding_mask,
|
405 |
+
mask=False,
|
406 |
+
)
|
407 |
+
|
408 |
+
target_layer_results = [l[2] for l in y["layer_results"]]
|
409 |
+
|
410 |
+
permuted = False
|
411 |
+
if self.cfg.instance_norm_target_layer or self.cfg.batch_norm_target_layer:
|
412 |
+
target_layer_results = [
|
413 |
+
tl.permute(1, 2, 0) for tl in target_layer_results # TBC -> BCT
|
414 |
+
]
|
415 |
+
permuted = True
|
416 |
+
|
417 |
+
if self.cfg.batch_norm_target_layer:
|
418 |
+
target_layer_results = [
|
419 |
+
F.batch_norm(
|
420 |
+
tl.float(), running_mean=None, running_var=None, training=True
|
421 |
+
)
|
422 |
+
for tl in target_layer_results
|
423 |
+
]
|
424 |
+
|
425 |
+
if self.cfg.instance_norm_target_layer:
|
426 |
+
target_layer_results = [
|
427 |
+
F.instance_norm(tl.float()) for tl in target_layer_results
|
428 |
+
]
|
429 |
+
|
430 |
+
if permuted:
|
431 |
+
target_layer_results = [
|
432 |
+
tl.transpose(1, 2) for tl in target_layer_results # BCT -> BTC
|
433 |
+
]
|
434 |
+
|
435 |
+
if self.cfg.group_norm_target_layer:
|
436 |
+
target_layer_results = [
|
437 |
+
F.layer_norm(tl.float(), tl.shape[-2:])
|
438 |
+
for tl in target_layer_results
|
439 |
+
]
|
440 |
+
|
441 |
+
if self.cfg.layer_norm_target_layer:
|
442 |
+
target_layer_results = [
|
443 |
+
F.layer_norm(tl.float(), tl.shape[-1:])
|
444 |
+
for tl in target_layer_results
|
445 |
+
]
|
446 |
+
|
447 |
+
y = sum(target_layer_results) / len(target_layer_results)
|
448 |
+
|
449 |
+
if self.cfg.layer_norm_targets:
|
450 |
+
y = F.layer_norm(y.float(), y.shape[-1:])
|
451 |
+
|
452 |
+
if self.cfg.instance_norm_targets:
|
453 |
+
y = F.instance_norm(y.float().transpose(1, 2)).transpose(1, 2)
|
454 |
+
|
455 |
+
if not permuted:
|
456 |
+
y = y.transpose(0, 1)
|
457 |
+
|
458 |
+
y = y[mask_indices]
|
459 |
+
|
460 |
+
x = x[mask_indices]
|
461 |
+
x = self.final_proj(x)
|
462 |
+
|
463 |
+
sz = x.size(-1)
|
464 |
+
|
465 |
+
if self.loss_beta == 0:
|
466 |
+
loss = F.mse_loss(x.float(), y.float(), reduction="none").sum(dim=-1)
|
467 |
+
else:
|
468 |
+
loss = F.smooth_l1_loss(
|
469 |
+
x.float(), y.float(), reduction="none", beta=self.loss_beta
|
470 |
+
).sum(dim=-1)
|
471 |
+
|
472 |
+
if self.loss_scale is not None:
|
473 |
+
scale = self.loss_scale
|
474 |
+
else:
|
475 |
+
scale = 1 / math.sqrt(sz)
|
476 |
+
|
477 |
+
result["losses"]["regression"] = loss.sum() * scale
|
478 |
+
|
479 |
+
if "sample_size" not in result:
|
480 |
+
result["sample_size"] = loss.numel()
|
481 |
+
|
482 |
+
with torch.no_grad():
|
483 |
+
result["target_var"] = self.compute_var(y)
|
484 |
+
result["pred_var"] = self.compute_var(x.float())
|
485 |
+
|
486 |
+
if self.num_updates > 5000 and result["target_var"] < self.cfg.min_target_var:
|
487 |
+
logger.error(
|
488 |
+
f"target var is {result['target_var'].item()} < {self.cfg.min_target_var}, exiting"
|
489 |
+
)
|
490 |
+
raise Exception(
|
491 |
+
f"target var is {result['target_var'].item()} < {self.cfg.min_target_var}, exiting"
|
492 |
+
)
|
493 |
+
if self.num_updates > 5000 and result["pred_var"] < self.cfg.min_pred_var:
|
494 |
+
logger.error(
|
495 |
+
f"pred var is {result['pred_var'].item()} < {self.cfg.min_pred_var}, exiting"
|
496 |
+
)
|
497 |
+
raise Exception(
|
498 |
+
f"pred var is {result['pred_var'].item()} < {self.cfg.min_pred_var}, exiting"
|
499 |
+
)
|
500 |
+
|
501 |
+
if self.ema is not None:
|
502 |
+
result["ema_decay"] = self.ema.get_decay() * 1000
|
503 |
+
|
504 |
+
return result
|
505 |
+
|
506 |
+
@staticmethod
|
507 |
+
def compute_var(y):
|
508 |
+
y = y.view(-1, y.size(-1))
|
509 |
+
if dist.is_initialized():
|
510 |
+
zc = torch.tensor(y.size(0)).cuda()
|
511 |
+
zs = y.sum(dim=0)
|
512 |
+
zss = (y ** 2).sum(dim=0)
|
513 |
+
|
514 |
+
dist.all_reduce(zc)
|
515 |
+
dist.all_reduce(zs)
|
516 |
+
dist.all_reduce(zss)
|
517 |
+
|
518 |
+
var = zss / (zc - 1) - (zs ** 2) / (zc * (zc - 1))
|
519 |
+
return torch.sqrt(var + 1e-6).mean()
|
520 |
+
else:
|
521 |
+
return torch.sqrt(y.var(dim=0) + 1e-6).mean()
|
522 |
+
|
523 |
+
def extract_features(
|
524 |
+
self, source, padding_mask, mask=False, layer=None
|
525 |
+
):
|
526 |
+
res = self.forward(
|
527 |
+
source,
|
528 |
+
padding_mask,
|
529 |
+
mask=mask,
|
530 |
+
features_only=True,
|
531 |
+
layer=layer,
|
532 |
+
)
|
533 |
+
return res
|
534 |
+
|
535 |
+
def remove_pretraining_modules(self, last_layer=None):
|
536 |
+
self.final_proj = None
|
537 |
+
self.ema = None
|
538 |
+
if last_layer is not None:
|
539 |
+
self.encoder.layers = nn.ModuleList(
|
540 |
+
l for i, l in enumerate(self.encoder.layers) if i <= last_layer
|
541 |
+
)
|