KingNish commited on
Commit
a82df09
·
verified ·
1 Parent(s): 95c6462

Upload ./RepCodec/examples/whisper_model.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. RepCodec/examples/whisper_model.py +58 -0
RepCodec/examples/whisper_model.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) ByteDance, Inc. and its affiliates.
2
+ # Copyright (c) Chutong Meng
3
+ #
4
+ # This source code is licensed under the MIT license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ # Based on fairseq (https://github.com/facebookresearch/fairseq) and
7
+ # Whisper (https://github.com/openai/whisper/)
8
+
9
+ from typing import Optional
10
+
11
+ import torch
12
+ import torch.nn.functional as F
13
+ from torch import Tensor
14
+ from whisper.model import AudioEncoder, sinusoids, Whisper, ModelDimensions
15
+
16
+
17
+ class AudioEncoder_(AudioEncoder):
18
+ def __init__(self, *args, **kwargs):
19
+ super(AudioEncoder_, self).__init__(*args, **kwargs)
20
+
21
+ def extract_feature(self, x: Tensor, target_layer: Optional[int] = None):
22
+ """
23
+ x : torch.Tensor, shape = (batch_size, n_mels, n_ctx)
24
+ the mel spectrogram of the audio
25
+ """
26
+ x = F.gelu(self.conv1(x))
27
+ x = F.gelu(self.conv2(x))
28
+ x = x.permute(0, 2, 1)
29
+
30
+ length_x = x.shape[1]
31
+ if length_x > self.positional_embedding.shape[0]:
32
+ self.register_buffer("positional_embedding", sinusoids(length_x, self.positional_embedding.shape[1]))
33
+ self.positional_embedding = self.positional_embedding.to(x.device)
34
+ x = (x + self.positional_embedding[:length_x, :]).to(x.dtype)
35
+
36
+ if target_layer is None:
37
+ target_layer = len(self.blocks)
38
+
39
+ for block in self.blocks[:target_layer]:
40
+ x = block(x)
41
+
42
+ return x
43
+
44
+
45
+ class Whisper_(Whisper):
46
+ def __init__(self, dims: ModelDimensions):
47
+ super(Whisper_, self).__init__(dims)
48
+ # replace audio encoder with our audio encoder
49
+ self.encoder = AudioEncoder_(
50
+ self.dims.n_mels,
51
+ self.dims.n_audio_ctx,
52
+ self.dims.n_audio_state,
53
+ self.dims.n_audio_head,
54
+ self.dims.n_audio_layer,
55
+ )
56
+
57
+ def extract_features(self, mel: torch.Tensor, target_layer: Optional[int] = None):
58
+ return self.encoder.extract_feature(mel, target_layer)