Upload ./RepCodec/examples/whisper_feature_reader.py with huggingface_hub
Browse files
RepCodec/examples/whisper_feature_reader.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) ByteDance, Inc. and its affiliates.
|
2 |
+
# Copyright (c) Chutong Meng
|
3 |
+
#
|
4 |
+
# This source code is licensed under the MIT license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
# Based on fairseq (https://github.com/facebookresearch/fairseq) and
|
7 |
+
# Whisper (https://github.com/openai/whisper/)
|
8 |
+
|
9 |
+
import io
|
10 |
+
import logging
|
11 |
+
import os
|
12 |
+
from typing import Optional, Union
|
13 |
+
|
14 |
+
import soundfile as sf
|
15 |
+
import torch
|
16 |
+
from whisper import _MODELS, _download, _ALIGNMENT_HEADS, available_models
|
17 |
+
from whisper.audio import log_mel_spectrogram
|
18 |
+
from whisper.model import ModelDimensions
|
19 |
+
|
20 |
+
from whisper_model import Whisper_
|
21 |
+
|
22 |
+
logger = logging.getLogger("dump_feature")
|
23 |
+
|
24 |
+
|
25 |
+
def load_model(
|
26 |
+
name: str,
|
27 |
+
device: Optional[Union[str, torch.device]] = None,
|
28 |
+
download_root: str = None,
|
29 |
+
in_memory: bool = False,
|
30 |
+
) -> Whisper_:
|
31 |
+
"""
|
32 |
+
Reference: https://github.com/openai/whisper/blob/main/whisper/__init__.py#L97
|
33 |
+
But we will load a `Whisper_` model for feature extraction.
|
34 |
+
|
35 |
+
Parameters
|
36 |
+
----------
|
37 |
+
name : str
|
38 |
+
one of the official model names listed by `whisper.available_models()`, or
|
39 |
+
path to a model checkpoint containing the model dimensions and the model state_dict.
|
40 |
+
device : Union[str, torch.device]
|
41 |
+
the PyTorch device to put the model into
|
42 |
+
download_root: str
|
43 |
+
path to download the model files; by default, it uses "~/.cache/whisper"
|
44 |
+
in_memory: bool
|
45 |
+
whether to preload the model weights into host memory
|
46 |
+
|
47 |
+
Returns
|
48 |
+
-------
|
49 |
+
model : Whisper
|
50 |
+
The Whisper ASR model instance
|
51 |
+
"""
|
52 |
+
|
53 |
+
if device is None:
|
54 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
55 |
+
if download_root is None:
|
56 |
+
default = os.path.join(os.path.expanduser("~"), ".cache")
|
57 |
+
download_root = os.path.join(os.getenv("XDG_CACHE_HOME", default), "whisper")
|
58 |
+
|
59 |
+
if name in _MODELS:
|
60 |
+
checkpoint_file = _download(_MODELS[name], download_root, in_memory)
|
61 |
+
alignment_heads = _ALIGNMENT_HEADS[name]
|
62 |
+
elif os.path.isfile(name):
|
63 |
+
checkpoint_file = open(name, "rb").read() if in_memory else name
|
64 |
+
alignment_heads = None
|
65 |
+
else:
|
66 |
+
raise RuntimeError(
|
67 |
+
f"Model {name} not found; available models = {available_models()}"
|
68 |
+
)
|
69 |
+
|
70 |
+
with (
|
71 |
+
io.BytesIO(checkpoint_file) if in_memory else open(checkpoint_file, "rb")
|
72 |
+
) as fp:
|
73 |
+
checkpoint = torch.load(fp, map_location=device)
|
74 |
+
del checkpoint_file
|
75 |
+
|
76 |
+
dims = ModelDimensions(**checkpoint["dims"])
|
77 |
+
model = Whisper_(dims)
|
78 |
+
model.load_state_dict(checkpoint["model_state_dict"])
|
79 |
+
|
80 |
+
if alignment_heads is not None:
|
81 |
+
model.set_alignment_heads(alignment_heads)
|
82 |
+
|
83 |
+
return model.to(device)
|
84 |
+
|
85 |
+
|
86 |
+
class WhisperFeatureReader(object):
|
87 |
+
def __init__(self, root, ckpt, layer, device):
|
88 |
+
self.device = device
|
89 |
+
logger.info(f"device = {self.device}")
|
90 |
+
|
91 |
+
self.model: Whisper_ = load_model(name=ckpt, device=self.device, download_root=root).eval()
|
92 |
+
self.model.decoder = None # to save some memory by deleting the decoder
|
93 |
+
self.layer = layer # one-based
|
94 |
+
|
95 |
+
def read_audio(self, path, ref_len=None):
|
96 |
+
wav, sample_rate = sf.read(path)
|
97 |
+
assert sample_rate == 16000, sample_rate
|
98 |
+
if ref_len is not None and abs(ref_len - len(wav)) > 160:
|
99 |
+
logger.warning(f"ref {ref_len} != read {len(wav)} ({path})")
|
100 |
+
return wav
|
101 |
+
|
102 |
+
def get_feats(self, path, ref_len=None):
|
103 |
+
wav = self.read_audio(path, ref_len)
|
104 |
+
audio_length = len(wav)
|
105 |
+
with torch.no_grad():
|
106 |
+
mel = log_mel_spectrogram(torch.from_numpy(wav).float().to(self.device))
|
107 |
+
hidden = self.model.extract_features(mel.unsqueeze(0), target_layer=self.layer)
|
108 |
+
feature_length = audio_length // 320
|
109 |
+
hidden = hidden[0, :feature_length]
|
110 |
+
return hidden.contiguous()
|