File size: 18,117 Bytes
f5135ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
# Copyright (c) ByteDance, Inc. and its affiliates.
# Copyright (c) Chutong Meng
# 
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# Based on fairseq (https://github.com/facebookresearch/fairseq)

# ref: https://github.com/facebookresearch/fairseq/blob/main/examples/data2vec/models/data2vec_audio.py

import logging
import math
from dataclasses import dataclass, field
from typing import Optional

from omegaconf import II

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist

from fairseq.modules import EMAModule, EMAModuleConfig
from fairseq.data.data_utils import compute_mask_indices
from fairseq.models import BaseFairseqModel, register_model
from fairseq.models.wav2vec import (
    ConvFeatureExtractionModel,
    Wav2Vec2Config,
    TransformerEncoder,
)
from fairseq.modules import (
    GradMultiply,
    LayerNorm,
)
from fairseq.utils import index_put


logger = logging.getLogger(__name__)


@dataclass
class Data2VecAudioConfig(Wav2Vec2Config):

    loss_beta: float = field(
        default=0, metadata={"help": "beta for smooth l1 loss. 0 means use l2 loss"}
    )
    loss_scale: Optional[float] = field(
        default=None,
        metadata={
            "help": "scale the reconstruction loss by this constant. if None then scales by 1/sqrt(dim)"
        },
    )
    average_top_k_layers: int = field(
        default=8, metadata={"help": "how many layers to average"}
    )

    layer_norm_target_layer: bool = False
    instance_norm_target_layer: bool = False
    instance_norm_targets: bool = False
    layer_norm_targets: bool = False
    batch_norm_target_layer: bool = False
    group_norm_target_layer: bool = False

    ema_decay: float = field(default=0.999, metadata={"help": "initial ema decay rate"})
    ema_end_decay: float = field(
        default=0.9999, metadata={"help": "final ema decay rate"}
    )

    # when to finish annealing ema decay rate
    ema_anneal_end_step: int = II("optimization.max_update")

    ema_transformer_only: bool = field(
        default=True,
        metadata={"help": "whether to momentum update only the transformer"},
    )
    ema_layers_only: bool = field(
        default=True,
        metadata={"help": "whether to momentum update only the transformer layers"},
    )

    max_update: int = II("optimization.max_update")

    min_target_var: float = field(
        default=0.1, metadata={"help": "stop training if target var falls below this"}
    )
    min_pred_var: float = field(
        default=0.01,
        metadata={"help": "stop training if prediction var falls below this"},
    )


def get_annealed_rate(start, end, curr_step, total_steps):
    r = end - start
    pct_remaining = 1 - curr_step / total_steps
    return end - r * pct_remaining


@register_model("data2vec_audio", dataclass=Data2VecAudioConfig)
class Data2VecAudioModel(BaseFairseqModel):
    def __init__(self, cfg: Data2VecAudioConfig):
        super().__init__()
        self.cfg = cfg

        feature_enc_layers = eval(cfg.conv_feature_layers)
        self.extractor_embed = feature_enc_layers[-1][0]

        self.ema = None
        self.embed = cfg.encoder_embed_dim

        self.average_top_k_layers = cfg.average_top_k_layers
        self.loss_beta = cfg.loss_beta
        self.loss_scale = cfg.loss_scale

        self.feature_extractor = ConvFeatureExtractionModel(
            conv_layers=feature_enc_layers,
            dropout=0.0,
            mode=cfg.extractor_mode,
            conv_bias=cfg.conv_bias,
        )

        self.post_extract_proj = nn.Linear(self.extractor_embed, cfg.encoder_embed_dim)

        self.mask_prob = cfg.mask_prob
        self.mask_selection = cfg.mask_selection
        self.mask_other = cfg.mask_other
        self.mask_length = cfg.mask_length
        self.no_mask_overlap = cfg.no_mask_overlap
        self.mask_min_space = cfg.mask_min_space

        self.mask_channel_prob = cfg.mask_channel_prob
        self.mask_channel_before = cfg.mask_channel_before
        self.mask_channel_selection = cfg.mask_channel_selection
        self.mask_channel_other = cfg.mask_channel_other
        self.mask_channel_length = cfg.mask_channel_length
        self.no_mask_channel_overlap = cfg.no_mask_channel_overlap
        self.mask_channel_min_space = cfg.mask_channel_min_space

        self.dropout_input = nn.Dropout(cfg.dropout_input)
        self.dropout_features = nn.Dropout(cfg.dropout_features)

        self.feature_grad_mult = cfg.feature_grad_mult

        self.mask_emb = nn.Parameter(
            torch.FloatTensor(cfg.encoder_embed_dim).uniform_()
        )

        self.encoder = TransformerEncoder(cfg)
        self.layer_norm = LayerNorm(self.extractor_embed)

        self.final_proj = nn.Linear(self.embed, self.embed)

        self.num_updates = 0

    def make_ema_teacher(self):
        ema_config = EMAModuleConfig(
            ema_decay=self.cfg.ema_decay,
            ema_fp32=True,
        )
        skip_keys = set()
        if self.cfg.ema_layers_only:
            self.cfg.ema_transformer_only = True
            for k, _ in self.encoder.pos_conv.named_parameters():
                skip_keys.add(f"pos_conv.{k}")

        self.ema = EMAModule(
            self.encoder if self.cfg.ema_transformer_only else self,
            ema_config,
            skip_keys=skip_keys,
        )

    def set_num_updates(self, num_updates):
        super().set_num_updates(num_updates)

        if self.ema is None and self.final_proj is not None:
            logger.info(f"making ema teacher")
            self.make_ema_teacher()
        elif self.training and self.ema is not None:
            if self.cfg.ema_decay != self.cfg.ema_end_decay:
                if num_updates >= self.cfg.ema_anneal_end_step:
                    decay = self.cfg.ema_end_decay
                else:
                    decay = get_annealed_rate(
                        self.cfg.ema_decay,
                        self.cfg.ema_end_decay,
                        num_updates,
                        self.cfg.ema_anneal_end_step,
                    )
                self.ema.set_decay(decay)
            if self.ema.get_decay() < 1:
                self.ema.step(self.encoder if self.cfg.ema_transformer_only else self)

        self.num_updates = num_updates

    def state_dict(self, destination=None, prefix="", keep_vars=False):
        state = super().state_dict(destination, prefix, keep_vars)

        if self.ema is not None:
            state[prefix + "_ema"] = self.ema.fp32_params

        return state

    def _load_from_state_dict(self, state_dict, prefix, *args, **kwargs):
        if self.ema is not None:
            k = prefix + "_ema"
            assert k in state_dict
            self.ema.restore(state_dict[k], True)
            del state_dict[k]
        return super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)

    @classmethod
    def build_model(cls, cfg: Data2VecAudioConfig, task=None):
        """Build a new model instance."""

        return cls(cfg)

    def apply_mask(
        self,
        x,
        padding_mask,
        mask_indices=None,
        mask_channel_indices=None,
    ):
        B, T, C = x.shape

        if self.mask_channel_prob > 0 and self.mask_channel_before:
            mask_channel_indices = compute_mask_indices(
                (B, C),
                None,
                self.mask_channel_prob,
                self.mask_channel_length,
                self.mask_channel_selection,
                self.mask_channel_other,
                no_overlap=self.no_mask_channel_overlap,
                min_space=self.mask_channel_min_space,
            )
            mask_channel_indices = (
                torch.from_numpy(mask_channel_indices)
                .to(x.device)
                .unsqueeze(1)
                .expand(-1, T, -1)
            )
            x[mask_channel_indices] = 0

        if self.mask_prob > 0:
            if mask_indices is None:
                mask_indices = compute_mask_indices(
                    (B, T),
                    padding_mask,
                    self.mask_prob,
                    self.mask_length,
                    self.mask_selection,
                    self.mask_other,
                    min_masks=1,
                    no_overlap=self.no_mask_overlap,
                    min_space=self.mask_min_space,
                    require_same_masks=self.cfg.require_same_masks,
                    mask_dropout=self.cfg.mask_dropout,
                )
                mask_indices = torch.from_numpy(mask_indices).to(x.device)
            x = index_put(x, mask_indices, self.mask_emb)
        else:
            mask_indices = None

        if self.mask_channel_prob > 0 and not self.mask_channel_before:
            if mask_channel_indices is None:
                mask_channel_indices = compute_mask_indices(
                    (B, C),
                    None,
                    self.mask_channel_prob,
                    self.mask_channel_length,
                    self.mask_channel_selection,
                    self.mask_channel_other,
                    no_overlap=self.no_mask_channel_overlap,
                    min_space=self.mask_channel_min_space,
                )
                mask_channel_indices = (
                    torch.from_numpy(mask_channel_indices)
                    .to(x.device)
                    .unsqueeze(1)
                    .expand(-1, T, -1)
                )
            x = index_put(x, mask_channel_indices, 0)

        return x, mask_indices

    def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
        """
        Computes the output length of the convolutional layers
        """

        def _conv_out_length(input_length, kernel_size, stride):
            return torch.floor((input_length - kernel_size) / stride + 1)

        conv_cfg_list = eval(self.cfg.conv_feature_layers)

        for i in range(len(conv_cfg_list)):
            input_lengths = _conv_out_length(
                input_lengths, conv_cfg_list[i][1], conv_cfg_list[i][2]
            )

        return input_lengths.to(torch.long)

    def forward(
        self,
        source,
        padding_mask=None,
        mask=True,
        features_only=False,
        layer=None,
        mask_indices=None,
        mask_channel_indices=None,
        padding_count=None,
    ):
        features = source

        if self.feature_grad_mult > 0:
            features = self.feature_extractor(features)
            if self.feature_grad_mult != 1.0:
                features = GradMultiply.apply(features, self.feature_grad_mult)
        else:
            with torch.no_grad():
                features = self.feature_extractor(features)

        features = features.transpose(1, 2)

        features = self.layer_norm(features)

        orig_padding_mask = padding_mask

        if padding_mask is not None and padding_mask.any():
            input_lengths = (1 - padding_mask.long()).sum(-1)
            # apply conv formula to get real output_lengths
            output_lengths = self._get_feat_extract_output_lengths(input_lengths)

            padding_mask = torch.zeros(
                features.shape[:2], dtype=features.dtype, device=features.device
            )

            # these two operations makes sure that all values
            # before the output lengths indices are attended to
            padding_mask[
                (
                    torch.arange(padding_mask.shape[0], device=padding_mask.device),
                    output_lengths - 1,
                )
            ] = 1
            padding_mask = (1 - padding_mask.flip([-1]).cumsum(-1).flip([-1])).bool()
        else:
            padding_mask = None

        if self.post_extract_proj is not None:
            features = self.post_extract_proj(features)

        pre_encoder_features = None
        if self.cfg.ema_transformer_only:
            pre_encoder_features = features.clone()

        features = self.dropout_input(features)

        if mask:
            x, mask_indices = self.apply_mask(
                features,
                padding_mask,
                mask_indices=mask_indices,
                mask_channel_indices=mask_channel_indices,
            )
        else:
            x = features
            mask_indices = None

        x, layer_results = self.encoder(
            x,
            padding_mask=padding_mask,
            layer=layer,
        )

        if features_only:
            return {
                "x": x,
                "padding_mask": padding_mask,
                "layer_results": layer_results,
            }

        result = {
            "losses": {},
        }

        with torch.no_grad():
            self.ema.model.eval()

            if self.cfg.ema_transformer_only:
                y, layer_results = self.ema.model.extract_features(
                    pre_encoder_features,
                    padding_mask=padding_mask,
                    min_layer=self.cfg.encoder_layers - self.average_top_k_layers,
                )
                y = {
                    "x": y,
                    "padding_mask": padding_mask,
                    "layer_results": layer_results,
                }
            else:
                y = self.ema.model.extract_features(
                    source=source,
                    padding_mask=orig_padding_mask,
                    mask=False,
                )

            target_layer_results = [l[2] for l in y["layer_results"]]

            permuted = False
            if self.cfg.instance_norm_target_layer or self.cfg.batch_norm_target_layer:
                target_layer_results = [
                    tl.permute(1, 2, 0) for tl in target_layer_results  # TBC -> BCT
                ]
                permuted = True

            if self.cfg.batch_norm_target_layer:
                target_layer_results = [
                    F.batch_norm(
                        tl.float(), running_mean=None, running_var=None, training=True
                    )
                    for tl in target_layer_results
                ]

            if self.cfg.instance_norm_target_layer:
                target_layer_results = [
                    F.instance_norm(tl.float()) for tl in target_layer_results
                ]

            if permuted:
                target_layer_results = [
                    tl.transpose(1, 2) for tl in target_layer_results  # BCT -> BTC
                ]

            if self.cfg.group_norm_target_layer:
                target_layer_results = [
                    F.layer_norm(tl.float(), tl.shape[-2:])
                    for tl in target_layer_results
                ]

            if self.cfg.layer_norm_target_layer:
                target_layer_results = [
                    F.layer_norm(tl.float(), tl.shape[-1:])
                    for tl in target_layer_results
                ]

            y = sum(target_layer_results) / len(target_layer_results)

            if self.cfg.layer_norm_targets:
                y = F.layer_norm(y.float(), y.shape[-1:])

            if self.cfg.instance_norm_targets:
                y = F.instance_norm(y.float().transpose(1, 2)).transpose(1, 2)

            if not permuted:
                y = y.transpose(0, 1)

            y = y[mask_indices]

        x = x[mask_indices]
        x = self.final_proj(x)

        sz = x.size(-1)

        if self.loss_beta == 0:
            loss = F.mse_loss(x.float(), y.float(), reduction="none").sum(dim=-1)
        else:
            loss = F.smooth_l1_loss(
                x.float(), y.float(), reduction="none", beta=self.loss_beta
            ).sum(dim=-1)

        if self.loss_scale is not None:
            scale = self.loss_scale
        else:
            scale = 1 / math.sqrt(sz)

        result["losses"]["regression"] = loss.sum() * scale

        if "sample_size" not in result:
            result["sample_size"] = loss.numel()

        with torch.no_grad():
            result["target_var"] = self.compute_var(y)
            result["pred_var"] = self.compute_var(x.float())

        if self.num_updates > 5000 and result["target_var"] < self.cfg.min_target_var:
            logger.error(
                f"target var is {result['target_var'].item()} < {self.cfg.min_target_var}, exiting"
            )
            raise Exception(
                f"target var is {result['target_var'].item()} < {self.cfg.min_target_var}, exiting"
            )
        if self.num_updates > 5000 and result["pred_var"] < self.cfg.min_pred_var:
            logger.error(
                f"pred var is {result['pred_var'].item()} < {self.cfg.min_pred_var}, exiting"
            )
            raise Exception(
                f"pred var is {result['pred_var'].item()} < {self.cfg.min_pred_var}, exiting"
            )

        if self.ema is not None:
            result["ema_decay"] = self.ema.get_decay() * 1000

        return result

    @staticmethod
    def compute_var(y):
        y = y.view(-1, y.size(-1))
        if dist.is_initialized():
            zc = torch.tensor(y.size(0)).cuda()
            zs = y.sum(dim=0)
            zss = (y ** 2).sum(dim=0)

            dist.all_reduce(zc)
            dist.all_reduce(zs)
            dist.all_reduce(zss)

            var = zss / (zc - 1) - (zs ** 2) / (zc * (zc - 1))
            return torch.sqrt(var + 1e-6).mean()
        else:
            return torch.sqrt(y.var(dim=0) + 1e-6).mean()

    def extract_features(
        self, source, padding_mask, mask=False, layer=None
    ):
        res = self.forward(
            source,
            padding_mask,
            mask=mask,
            features_only=True,
            layer=layer,
        )
        return res

    def remove_pretraining_modules(self, last_layer=None):
        self.final_proj = None
        self.ema = None
        if last_layer is not None:
            self.encoder.layers = nn.ModuleList(
                l for i, l in enumerate(self.encoder.layers) if i <= last_layer
            )