KingNish's picture
By deepseek prev was stable
15059e3 verified
raw
history blame
22.1 kB
import gradio as gr
import subprocess
import os
import shutil
import tempfile
import spaces
import torch
import torch.nn.functional as F
import sys
print("Installing flash-attn...")
# Install flash attention
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
from huggingface_hub import snapshot_download
# Create xcodec_mini_infer folder
folder_path = './xcodec_mini_infer'
# Create the folder if it doesn't exist
if not os.path.exists(folder_path):
os.mkdir(folder_path)
print(f"Folder created at: {folder_path}")
else:
print(f"Folder already exists at: {folder_path}")
snapshot_download(
repo_id="m-a-p/xcodec_mini_infer",
local_dir="./xcodec_mini_infer"
)
# Change to the "inference" directory
inference_dir = "."
try:
os.chdir(inference_dir)
print(f"Changed working directory to: {os.getcwd()}")
except FileNotFoundError:
print(f"Directory not found: {inference_dir}")
exit(1)
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
# don't change above code
import argparse
import numpy as np
import json
from omegaconf import OmegaConf
import torchaudio
from torchaudio.transforms import Resample
import soundfile as sf
import uuid
from tqdm import tqdm
from einops import rearrange
from codecmanipulator import CodecManipulator
from mmtokenizer import _MMSentencePieceTokenizer
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
import glob
import time
import copy
from collections import Counter
from models.soundstream_hubert_new import SoundStream
from vocoder import build_codec_model, process_audio
from post_process_audio import replace_low_freq_with_energy_matched
import re
import multiprocessing
def empty_output_folder(output_dir):
# List all files in the output directory
files = os.listdir(output_dir)
# Iterate over the files and remove them
for file in files:
file_path = os.path.join(output_dir, file)
try:
if os.path.isdir(file_path):
# If it's a directory, remove it recursively
shutil.rmtree(file_path)
else:
# If it's a file, delete it
os.remove(file_path)
except Exception as e:
print(f"Error deleting file {file_path}: {e}")
device = "cuda:0"
# --- Model Loading and Quantization ---
model = AutoModelForCausalLM.from_pretrained(
"m-a-p/YuE-s1-7B-anneal-en-cot",
torch_dtype=torch.float16,
attn_implementation="flash_attention_2", # To enable flashattn, you have to install flash-attn
)
model.to(device)
model.eval()
# Apply dynamic quantization
model = torch.quantization.quantize_dynamic(
model, {torch.nn.Linear}, dtype=torch.qint8
)
basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml'
resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth'
config_path = './xcodec_mini_infer/decoders/config.yaml'
vocal_decoder_path = './xcodec_mini_infer/decoders/decoder_131000.pth'
inst_decoder_path = './xcodec_mini_infer/decoders/decoder_151000.pth'
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
codectool = CodecManipulator("xcodec", 0, 1)
model_config = OmegaConf.load(basic_model_config)
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
parameter_dict = torch.load(resume_path, map_location='cpu')
codec_model.load_state_dict(parameter_dict['codec_model'])
codec_model.to(device)
codec_model.eval()
# --- Parallel Audio Processing ---
def process_audio_wrapper(args):
# Unpack arguments and call the original process_audio function
npy, output_path, rescale, other_args, decoder, codec_model = args
return process_audio(npy, output_path, rescale, other_args, decoder, codec_model)
def parallel_process_audio(stage1_output_set, vocoder_stems_dir, rescale, other_args, vocal_decoder, inst_decoder,
codec_model, num_processes=4):
with multiprocessing.Pool(processes=num_processes) as pool:
tasks = []
for npy in stage1_output_set:
if 'instrumental' in npy:
output_path = os.path.join(vocoder_stems_dir, 'instrumental.mp3')
decoder = inst_decoder
else:
output_path = os.path.join(vocoder_stems_dir, 'vocal.mp3')
decoder = vocal_decoder
tasks.append((npy, output_path, rescale, other_args, decoder, codec_model))
results = pool.map(process_audio_wrapper, tasks)
return results
# --- Optimized Music Generation ---
def generate_music(
max_new_tokens=5,
run_n_segments=2,
genre_txt=None,
lyrics_txt=None,
use_audio_prompt=False,
audio_prompt_path="",
prompt_start_time=0.0,
prompt_end_time=30.0,
output_dir="./output",
rescale=False,
beam_width=3, # Add beam search
length_penalty=1.0, # Add length penalty
repetition_penalty=1.5, # Add repetition penalty
batch_size=2
):
if use_audio_prompt and not audio_prompt_path:
raise FileNotFoundError(
"Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!")
max_new_tokens = max_new_tokens * 100
stage1_output_dir = os.path.join(output_dir, f"stage1")
os.makedirs(stage1_output_dir, exist_ok=True)
class BlockTokenRangeProcessor(LogitsProcessor):
def __init__(self, start_id, end_id):
self.blocked_token_ids = list(range(start_id, end_id))
def __call__(self, input_ids, scores):
scores[:, self.blocked_token_ids] = -float("inf")
return scores
def load_audio_mono(filepath, sampling_rate=16000):
audio, sr = torchaudio.load(filepath)
# Convert to mono
audio = torch.mean(audio, dim=0, keepdim=True)
# Resample if needed
if sr != sampling_rate:
resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
audio = resampler(audio)
return audio
def split_lyrics(lyrics: str):
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
segments = re.findall(pattern, lyrics, re.DOTALL)
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
return structured_lyrics
# Call the function and print the result
stage1_output_set = []
genres = genre_txt.strip()
lyrics = split_lyrics(lyrics_txt + "\n")
# intruction
full_lyrics = "\n".join(lyrics)
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
prompt_texts += lyrics
random_id = uuid.uuid4()
output_seq = None
# Here is suggested decoding config
top_p = 0.93
temperature = 1.0
# special tokens
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
raw_output = None
segment_cache = {} # Cache for repeated segments
# Format text prompt
run_n_segments = min(run_n_segments + 1, len(lyrics))
print(list(enumerate(tqdm(prompt_texts[:run_n_segments]))))
# Modified loop for batching and caching
for i in range(1, run_n_segments, batch_size):
batch_segments = []
batch_prompts = []
for j in range(i, min(i + batch_size, run_n_segments)):
section_text = prompt_texts[j].replace('[start_of_segment]', '').replace('[end_of_segment]', '')
# Check cache
if section_text in segment_cache:
cached_output = segment_cache[section_text]
if j > 1:
raw_output = torch.cat([raw_output, cached_output], dim=1)
else:
raw_output = cached_output
continue
batch_segments.append(section_text)
guidance_scale = 1.5 if j <= 1 else 1.2
if j == 1:
if use_audio_prompt:
audio_prompt = load_audio_mono(audio_prompt_path)
audio_prompt.unsqueeze_(0)
with torch.no_grad():
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5)
raw_codes = raw_codes.transpose(0, 1)
raw_codes = raw_codes.cpu().numpy().astype(np.int16)
# Format audio prompt
code_ids = codectool.npy2ids(raw_codes[0])
audio_prompt_codec = code_ids[
int(prompt_start_time * 50): int(prompt_end_time * 50)] # 50 is tps of xcodec
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [
mmtokenizer.eoa]
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize(
"[end_of_reference]")
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
else:
head_id = mmtokenizer.tokenize(prompt_texts[0])
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
else:
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [
mmtokenizer.soa] + codectool.sep_ids
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device)
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if j > 1 else prompt_ids
# Use window slicing in case output sequence exceeds the context of model
max_context = 16384 - max_new_tokens - 1
if input_ids.shape[-1] > max_context:
print(
f'Section {j}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
input_ids = input_ids[:, -(max_context):]
batch_prompts.append(input_ids)
if not batch_prompts:
continue # All segments in the batch were cached
# Pad prompts in the batch to the same length
max_len = max(p.size(1) for p in batch_prompts)
padded_prompts = []
for p in batch_prompts:
pad_len = max_len - p.size(1)
padded_prompt = F.pad(p, (0, pad_len), value=mmtokenizer.eoa)
padded_prompts.append(padded_prompt)
batch_input_ids = torch.cat(padded_prompts, dim=0)
with torch.no_grad():
output_seqs = model.generate(
input_ids=batch_input_ids,
max_new_tokens=max_new_tokens,
min_new_tokens=100,
do_sample=True,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
eos_token_id=mmtokenizer.eoa,
pad_token_id=mmtokenizer.eoa,
logits_processor=LogitsProcessorList(
[BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]),
guidance_scale=guidance_scale,
use_cache=True,
num_beams=beam_width, # Use beam search
length_penalty=length_penalty, # Apply length penalty
)
# Process each output in the batch
for k, output_seq in enumerate(output_seqs):
if output_seq[0][-1].item() != mmtokenizer.eoa:
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device)
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
if i > 1:
raw_output = torch.cat([raw_output, batch_prompts[k][:, :batch_input_ids.shape[-1]],
output_seq[:, batch_input_ids.shape[-1]:]], dim=1)
else:
raw_output = output_seq
# Cache the generated output if not already cached
if batch_segments[k] not in segment_cache:
segment_cache[batch_segments[k]] = output_seq[:, batch_input_ids.shape[-1]:].cpu()
# save raw output and check sanity
ids = raw_output[0].cpu().numpy()
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()
if len(soa_idx) != len(eoa_idx):
raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}')
vocals = []
instrumentals = []
range_begin = 1 if use_audio_prompt else 0
for i in range(range_begin, len(soa_idx)):
codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]]
if codec_ids[0] == 32016:
codec_ids = codec_ids[1:]
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
vocals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0])
vocals.append(vocals_ids)
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1])
instrumentals.append(instrumentals_ids)
vocals = np.concatenate(vocals, axis=1)
instrumentals = np.concatenate(instrumentals, axis=1)
vocal_save_path = os.path.join(stage1_output_dir,
f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_vocal_{random_id}".replace(
'.', '@') + '.npy')
inst_save_path = os.path.join(stage1_output_dir,
f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_instrumental_{random_id}".replace(
'.', '@') + '.npy')
np.save(vocal_save_path, vocals)
np.save(inst_save_path, instrumentals)
stage1_output_set.append(vocal_save_path)
stage1_output_set.append(inst_save_path)
print("Converting to Audio...")
# convert audio tokens to audio
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
folder_path = os.path.dirname(path)
if not os.path.exists(folder_path):
os.makedirs(folder_path)
limit = 0.99
max_val = wav.abs().max()
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
# reconstruct tracks
recons_output_dir = os.path.join(output_dir, "recons")
recons_mix_dir = os.path.join(recons_output_dir, 'mix')
os.makedirs(recons_mix_dir, exist_ok=True)
tracks = []
for npy in stage1_output_set:
codec_result = np.load(npy)
decodec_rlt = []
with torch.no_grad():
decoded_waveform = codec_model.decode(
torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(
device))
decoded_waveform = decoded_waveform.cpu().squeeze(0)
decodec_rlt.append(torch.as_tensor(decoded_waveform))
decodec_rlt = torch.cat(decodec_rlt, dim=-1)
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3")
tracks.append(save_path)
save_audio(decodec_rlt, save_path, 16000)
# mix tracks
for inst_path in tracks:
try:
if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \
and 'instrumental' in inst_path:
# find pair
vocal_path = inst_path.replace('instrumental', 'vocal')
if not os.path.exists(vocal_path):
continue
# mix
recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed'))
vocal_stem, sr = sf.read(inst_path)
instrumental_stem, _ = sf.read(vocal_path)
mix_stem = (vocal_stem + instrumental_stem) / 1
sf.write(recons_mix, mix_stem, sr)
except Exception as e:
print(e)
# vocoder to upsample audios
vocal_decoder, inst_decoder = build_codec_model(config_path, vocal_decoder_path, inst_decoder_path)
vocoder_output_dir = os.path.join(output_dir, 'vocoder')
vocoder_stems_dir = os.path.join(vocoder_output_dir, 'stems')
vocoder_mix_dir = os.path.join(vocoder_output_dir, 'mix')
os.makedirs(vocoder_mix_dir, exist_ok=True)
os.makedirs(vocoder_stems_dir, exist_ok=True)
# Use parallel processing for vocoding
parallel_process_audio(stage1_output_set, vocoder_stems_dir, rescale, argparse.Namespace(**locals()), vocal_decoder,
inst_decoder, codec_model)
# mix tracks after parallel processing
instrumental_output_path = os.path.join(vocoder_stems_dir, 'instrumental.mp3')
vocal_output_path = os.path.join(vocoder_stems_dir, 'vocal.mp3')
if os.path.exists(instrumental_output_path) and os.path.exists(vocal_output_path):
instrumental_output, sr = torchaudio.load(instrumental_output_path)
vocal_output, _ = torchaudio.load(vocal_output_path)
try:
mix_output = instrumental_output + vocal_output
vocoder_mix = os.path.join(vocoder_mix_dir, os.path.basename(recons_mix))
save_audio(mix_output, vocoder_mix, 44100, rescale)
print(f"Created mix: {vocoder_mix}")
except RuntimeError as e:
print(e)
print(f"mix {vocoder_mix} failed! inst: {instrumental_output.shape}, vocal: {vocal_output.shape}")
else:
print("Skipping mix creation, instrumental or vocal output missing.")
# Post process
replace_low_freq_with_energy_matched(
a_file=recons_mix, # 16kHz
b_file=vocoder_mix, # 48kHz
c_file=os.path.join(output_dir, os.path.basename(recons_mix)),
cutoff_freq=5500.0
)
print("All process Done")
return recons_mix
@spaces.GPU(duration=120)
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=5):
# Ensure the output folder exists
output_dir = "./output"
os.makedirs(output_dir, exist_ok=True)
print(f"Output folder ensured at: {output_dir}")
empty_output_folder(output_dir)
# Execute the command
try:
music = generate_music(genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments,
output_dir=output_dir, cuda_idx=0, max_new_tokens=max_new_tokens)
return music
except Exception as e:
gr.Warning("An Error Occured: " + str(e))
return None
finally:
print("Temporary files deleted.")
# Gradio
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/multimodal-art-projection/YuE">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://map-yue.github.io">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
</div>
""")
with gr.Row():
with gr.Column():
genre_txt = gr.Textbox(label="Genre")
lyrics_txt = gr.Textbox(label="Lyrics")
with gr.Column():
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=5,
interactive=True)
submit_btn = gr.Button("Submit")
music_out = gr.Audio(label="Audio Result")
gr.Examples(
examples=[
[
"female blues airy vocal bright vocal piano sad romantic guitar jazz",
"""[verse]
In the quiet of the evening, shadows start to fall
Whispers of the night wind echo through the hall
Lost within the silence, I hear your gentle voice
Guiding me back homeward, making my heart rejoice
[chorus]
Don't let this moment fade, hold me close tonight
With you here beside me, everything's alright
Can't imagine life alone, don't want to let you go
Stay with me forever, let our love just flow
"""
],
[
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male",
"""[verse]
Woke up in the morning, sun is shining bright
Chasing all my dreams, gotta get my mind right
City lights are fading, but my vision's clear
Got my team beside me, no room for fear
Walking through the streets, beats inside my head
Every step I take, closer to the bread
People passing by, they don't understand
Building up my future with my own two hands
[chorus]
This is my life, and I'm aiming for the top
Never gonna quit, no, I'm never gonna stop
Through the highs and lows, I'mma keep it real
Living out my dreams with this mic and a deal
"""
]
],
inputs=[genre_txt, lyrics_txt],
outputs=[music_out],
cache_examples=True,
cache_mode="eager",
fn=infer
)
submit_btn.click(
fn=infer,
inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens],
outputs=[music_out]
)
demo.queue().launch(show_error=True)