File size: 22,142 Bytes
6c02161 b2d8a8c 15059e3 b2d8a8c 6df3b9e 649509e 15059e3 60eb847 b2d8a8c 6b78ccb 98d025d 15059e3 472d32d c022c1a 472d32d c022c1a 472d32d c022c1a 9df60ba c022c1a 15059e3 c022c1a 9df60ba 472d32d 22e7225 6b78ccb 858dd79 649509e 6b78ccb 649509e 6b78ccb 649509e 6b78ccb 649509e 01bd804 649509e 15059e3 6b78ccb 649509e 15059e3 649509e 01bd804 649509e 15059e3 649509e 15059e3 649509e 15059e3 649509e 15059e3 fa7e403 858dd79 15059e3 649509e 15059e3 649509e 15059e3 649509e 15059e3 649509e 15059e3 649509e 15059e3 649509e 15059e3 649509e 15059e3 649509e 15059e3 649509e 15059e3 649509e 15059e3 649509e 15059e3 649509e b1e4114 15059e3 649509e 15059e3 649509e 01bd804 15059e3 649509e 01bd804 649509e 15059e3 649509e 01bd804 15059e3 649509e 15059e3 649509e 15059e3 649509e 15059e3 649509e 15059e3 649509e 15059e3 649509e 15059e3 649509e 472d32d 649509e 15059e3 649509e 15059e3 649509e 813b3cf 15059e3 649509e 858dd79 649509e 15059e3 649509e 5bb3bd1 b05383e 15059e3 649509e 15059e3 649509e 15059e3 649509e 5bb3bd1 15059e3 649509e 15059e3 649509e 8cd422c 649509e 15059e3 5bb3bd1 649509e 15059e3 725074b 15059e3 725074b 15059e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 |
import gradio as gr
import subprocess
import os
import shutil
import tempfile
import spaces
import torch
import torch.nn.functional as F
import sys
print("Installing flash-attn...")
# Install flash attention
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
from huggingface_hub import snapshot_download
# Create xcodec_mini_infer folder
folder_path = './xcodec_mini_infer'
# Create the folder if it doesn't exist
if not os.path.exists(folder_path):
os.mkdir(folder_path)
print(f"Folder created at: {folder_path}")
else:
print(f"Folder already exists at: {folder_path}")
snapshot_download(
repo_id="m-a-p/xcodec_mini_infer",
local_dir="./xcodec_mini_infer"
)
# Change to the "inference" directory
inference_dir = "."
try:
os.chdir(inference_dir)
print(f"Changed working directory to: {os.getcwd()}")
except FileNotFoundError:
print(f"Directory not found: {inference_dir}")
exit(1)
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
# don't change above code
import argparse
import numpy as np
import json
from omegaconf import OmegaConf
import torchaudio
from torchaudio.transforms import Resample
import soundfile as sf
import uuid
from tqdm import tqdm
from einops import rearrange
from codecmanipulator import CodecManipulator
from mmtokenizer import _MMSentencePieceTokenizer
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
import glob
import time
import copy
from collections import Counter
from models.soundstream_hubert_new import SoundStream
from vocoder import build_codec_model, process_audio
from post_process_audio import replace_low_freq_with_energy_matched
import re
import multiprocessing
def empty_output_folder(output_dir):
# List all files in the output directory
files = os.listdir(output_dir)
# Iterate over the files and remove them
for file in files:
file_path = os.path.join(output_dir, file)
try:
if os.path.isdir(file_path):
# If it's a directory, remove it recursively
shutil.rmtree(file_path)
else:
# If it's a file, delete it
os.remove(file_path)
except Exception as e:
print(f"Error deleting file {file_path}: {e}")
device = "cuda:0"
# --- Model Loading and Quantization ---
model = AutoModelForCausalLM.from_pretrained(
"m-a-p/YuE-s1-7B-anneal-en-cot",
torch_dtype=torch.float16,
attn_implementation="flash_attention_2", # To enable flashattn, you have to install flash-attn
)
model.to(device)
model.eval()
# Apply dynamic quantization
model = torch.quantization.quantize_dynamic(
model, {torch.nn.Linear}, dtype=torch.qint8
)
basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml'
resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth'
config_path = './xcodec_mini_infer/decoders/config.yaml'
vocal_decoder_path = './xcodec_mini_infer/decoders/decoder_131000.pth'
inst_decoder_path = './xcodec_mini_infer/decoders/decoder_151000.pth'
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
codectool = CodecManipulator("xcodec", 0, 1)
model_config = OmegaConf.load(basic_model_config)
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
parameter_dict = torch.load(resume_path, map_location='cpu')
codec_model.load_state_dict(parameter_dict['codec_model'])
codec_model.to(device)
codec_model.eval()
# --- Parallel Audio Processing ---
def process_audio_wrapper(args):
# Unpack arguments and call the original process_audio function
npy, output_path, rescale, other_args, decoder, codec_model = args
return process_audio(npy, output_path, rescale, other_args, decoder, codec_model)
def parallel_process_audio(stage1_output_set, vocoder_stems_dir, rescale, other_args, vocal_decoder, inst_decoder,
codec_model, num_processes=4):
with multiprocessing.Pool(processes=num_processes) as pool:
tasks = []
for npy in stage1_output_set:
if 'instrumental' in npy:
output_path = os.path.join(vocoder_stems_dir, 'instrumental.mp3')
decoder = inst_decoder
else:
output_path = os.path.join(vocoder_stems_dir, 'vocal.mp3')
decoder = vocal_decoder
tasks.append((npy, output_path, rescale, other_args, decoder, codec_model))
results = pool.map(process_audio_wrapper, tasks)
return results
# --- Optimized Music Generation ---
def generate_music(
max_new_tokens=5,
run_n_segments=2,
genre_txt=None,
lyrics_txt=None,
use_audio_prompt=False,
audio_prompt_path="",
prompt_start_time=0.0,
prompt_end_time=30.0,
output_dir="./output",
rescale=False,
beam_width=3, # Add beam search
length_penalty=1.0, # Add length penalty
repetition_penalty=1.5, # Add repetition penalty
batch_size=2
):
if use_audio_prompt and not audio_prompt_path:
raise FileNotFoundError(
"Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!")
max_new_tokens = max_new_tokens * 100
stage1_output_dir = os.path.join(output_dir, f"stage1")
os.makedirs(stage1_output_dir, exist_ok=True)
class BlockTokenRangeProcessor(LogitsProcessor):
def __init__(self, start_id, end_id):
self.blocked_token_ids = list(range(start_id, end_id))
def __call__(self, input_ids, scores):
scores[:, self.blocked_token_ids] = -float("inf")
return scores
def load_audio_mono(filepath, sampling_rate=16000):
audio, sr = torchaudio.load(filepath)
# Convert to mono
audio = torch.mean(audio, dim=0, keepdim=True)
# Resample if needed
if sr != sampling_rate:
resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
audio = resampler(audio)
return audio
def split_lyrics(lyrics: str):
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
segments = re.findall(pattern, lyrics, re.DOTALL)
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
return structured_lyrics
# Call the function and print the result
stage1_output_set = []
genres = genre_txt.strip()
lyrics = split_lyrics(lyrics_txt + "\n")
# intruction
full_lyrics = "\n".join(lyrics)
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
prompt_texts += lyrics
random_id = uuid.uuid4()
output_seq = None
# Here is suggested decoding config
top_p = 0.93
temperature = 1.0
# special tokens
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
raw_output = None
segment_cache = {} # Cache for repeated segments
# Format text prompt
run_n_segments = min(run_n_segments + 1, len(lyrics))
print(list(enumerate(tqdm(prompt_texts[:run_n_segments]))))
# Modified loop for batching and caching
for i in range(1, run_n_segments, batch_size):
batch_segments = []
batch_prompts = []
for j in range(i, min(i + batch_size, run_n_segments)):
section_text = prompt_texts[j].replace('[start_of_segment]', '').replace('[end_of_segment]', '')
# Check cache
if section_text in segment_cache:
cached_output = segment_cache[section_text]
if j > 1:
raw_output = torch.cat([raw_output, cached_output], dim=1)
else:
raw_output = cached_output
continue
batch_segments.append(section_text)
guidance_scale = 1.5 if j <= 1 else 1.2
if j == 1:
if use_audio_prompt:
audio_prompt = load_audio_mono(audio_prompt_path)
audio_prompt.unsqueeze_(0)
with torch.no_grad():
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5)
raw_codes = raw_codes.transpose(0, 1)
raw_codes = raw_codes.cpu().numpy().astype(np.int16)
# Format audio prompt
code_ids = codectool.npy2ids(raw_codes[0])
audio_prompt_codec = code_ids[
int(prompt_start_time * 50): int(prompt_end_time * 50)] # 50 is tps of xcodec
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [
mmtokenizer.eoa]
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize(
"[end_of_reference]")
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
else:
head_id = mmtokenizer.tokenize(prompt_texts[0])
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
else:
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [
mmtokenizer.soa] + codectool.sep_ids
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device)
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if j > 1 else prompt_ids
# Use window slicing in case output sequence exceeds the context of model
max_context = 16384 - max_new_tokens - 1
if input_ids.shape[-1] > max_context:
print(
f'Section {j}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
input_ids = input_ids[:, -(max_context):]
batch_prompts.append(input_ids)
if not batch_prompts:
continue # All segments in the batch were cached
# Pad prompts in the batch to the same length
max_len = max(p.size(1) for p in batch_prompts)
padded_prompts = []
for p in batch_prompts:
pad_len = max_len - p.size(1)
padded_prompt = F.pad(p, (0, pad_len), value=mmtokenizer.eoa)
padded_prompts.append(padded_prompt)
batch_input_ids = torch.cat(padded_prompts, dim=0)
with torch.no_grad():
output_seqs = model.generate(
input_ids=batch_input_ids,
max_new_tokens=max_new_tokens,
min_new_tokens=100,
do_sample=True,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
eos_token_id=mmtokenizer.eoa,
pad_token_id=mmtokenizer.eoa,
logits_processor=LogitsProcessorList(
[BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]),
guidance_scale=guidance_scale,
use_cache=True,
num_beams=beam_width, # Use beam search
length_penalty=length_penalty, # Apply length penalty
)
# Process each output in the batch
for k, output_seq in enumerate(output_seqs):
if output_seq[0][-1].item() != mmtokenizer.eoa:
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device)
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
if i > 1:
raw_output = torch.cat([raw_output, batch_prompts[k][:, :batch_input_ids.shape[-1]],
output_seq[:, batch_input_ids.shape[-1]:]], dim=1)
else:
raw_output = output_seq
# Cache the generated output if not already cached
if batch_segments[k] not in segment_cache:
segment_cache[batch_segments[k]] = output_seq[:, batch_input_ids.shape[-1]:].cpu()
# save raw output and check sanity
ids = raw_output[0].cpu().numpy()
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()
if len(soa_idx) != len(eoa_idx):
raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}')
vocals = []
instrumentals = []
range_begin = 1 if use_audio_prompt else 0
for i in range(range_begin, len(soa_idx)):
codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]]
if codec_ids[0] == 32016:
codec_ids = codec_ids[1:]
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
vocals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0])
vocals.append(vocals_ids)
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1])
instrumentals.append(instrumentals_ids)
vocals = np.concatenate(vocals, axis=1)
instrumentals = np.concatenate(instrumentals, axis=1)
vocal_save_path = os.path.join(stage1_output_dir,
f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_vocal_{random_id}".replace(
'.', '@') + '.npy')
inst_save_path = os.path.join(stage1_output_dir,
f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_instrumental_{random_id}".replace(
'.', '@') + '.npy')
np.save(vocal_save_path, vocals)
np.save(inst_save_path, instrumentals)
stage1_output_set.append(vocal_save_path)
stage1_output_set.append(inst_save_path)
print("Converting to Audio...")
# convert audio tokens to audio
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
folder_path = os.path.dirname(path)
if not os.path.exists(folder_path):
os.makedirs(folder_path)
limit = 0.99
max_val = wav.abs().max()
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
# reconstruct tracks
recons_output_dir = os.path.join(output_dir, "recons")
recons_mix_dir = os.path.join(recons_output_dir, 'mix')
os.makedirs(recons_mix_dir, exist_ok=True)
tracks = []
for npy in stage1_output_set:
codec_result = np.load(npy)
decodec_rlt = []
with torch.no_grad():
decoded_waveform = codec_model.decode(
torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(
device))
decoded_waveform = decoded_waveform.cpu().squeeze(0)
decodec_rlt.append(torch.as_tensor(decoded_waveform))
decodec_rlt = torch.cat(decodec_rlt, dim=-1)
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3")
tracks.append(save_path)
save_audio(decodec_rlt, save_path, 16000)
# mix tracks
for inst_path in tracks:
try:
if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \
and 'instrumental' in inst_path:
# find pair
vocal_path = inst_path.replace('instrumental', 'vocal')
if not os.path.exists(vocal_path):
continue
# mix
recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed'))
vocal_stem, sr = sf.read(inst_path)
instrumental_stem, _ = sf.read(vocal_path)
mix_stem = (vocal_stem + instrumental_stem) / 1
sf.write(recons_mix, mix_stem, sr)
except Exception as e:
print(e)
# vocoder to upsample audios
vocal_decoder, inst_decoder = build_codec_model(config_path, vocal_decoder_path, inst_decoder_path)
vocoder_output_dir = os.path.join(output_dir, 'vocoder')
vocoder_stems_dir = os.path.join(vocoder_output_dir, 'stems')
vocoder_mix_dir = os.path.join(vocoder_output_dir, 'mix')
os.makedirs(vocoder_mix_dir, exist_ok=True)
os.makedirs(vocoder_stems_dir, exist_ok=True)
# Use parallel processing for vocoding
parallel_process_audio(stage1_output_set, vocoder_stems_dir, rescale, argparse.Namespace(**locals()), vocal_decoder,
inst_decoder, codec_model)
# mix tracks after parallel processing
instrumental_output_path = os.path.join(vocoder_stems_dir, 'instrumental.mp3')
vocal_output_path = os.path.join(vocoder_stems_dir, 'vocal.mp3')
if os.path.exists(instrumental_output_path) and os.path.exists(vocal_output_path):
instrumental_output, sr = torchaudio.load(instrumental_output_path)
vocal_output, _ = torchaudio.load(vocal_output_path)
try:
mix_output = instrumental_output + vocal_output
vocoder_mix = os.path.join(vocoder_mix_dir, os.path.basename(recons_mix))
save_audio(mix_output, vocoder_mix, 44100, rescale)
print(f"Created mix: {vocoder_mix}")
except RuntimeError as e:
print(e)
print(f"mix {vocoder_mix} failed! inst: {instrumental_output.shape}, vocal: {vocal_output.shape}")
else:
print("Skipping mix creation, instrumental or vocal output missing.")
# Post process
replace_low_freq_with_energy_matched(
a_file=recons_mix, # 16kHz
b_file=vocoder_mix, # 48kHz
c_file=os.path.join(output_dir, os.path.basename(recons_mix)),
cutoff_freq=5500.0
)
print("All process Done")
return recons_mix
@spaces.GPU(duration=120)
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=5):
# Ensure the output folder exists
output_dir = "./output"
os.makedirs(output_dir, exist_ok=True)
print(f"Output folder ensured at: {output_dir}")
empty_output_folder(output_dir)
# Execute the command
try:
music = generate_music(genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments,
output_dir=output_dir, cuda_idx=0, max_new_tokens=max_new_tokens)
return music
except Exception as e:
gr.Warning("An Error Occured: " + str(e))
return None
finally:
print("Temporary files deleted.")
# Gradio
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/multimodal-art-projection/YuE">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://map-yue.github.io">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
</div>
""")
with gr.Row():
with gr.Column():
genre_txt = gr.Textbox(label="Genre")
lyrics_txt = gr.Textbox(label="Lyrics")
with gr.Column():
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=5,
interactive=True)
submit_btn = gr.Button("Submit")
music_out = gr.Audio(label="Audio Result")
gr.Examples(
examples=[
[
"female blues airy vocal bright vocal piano sad romantic guitar jazz",
"""[verse]
In the quiet of the evening, shadows start to fall
Whispers of the night wind echo through the hall
Lost within the silence, I hear your gentle voice
Guiding me back homeward, making my heart rejoice
[chorus]
Don't let this moment fade, hold me close tonight
With you here beside me, everything's alright
Can't imagine life alone, don't want to let you go
Stay with me forever, let our love just flow
"""
],
[
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male",
"""[verse]
Woke up in the morning, sun is shining bright
Chasing all my dreams, gotta get my mind right
City lights are fading, but my vision's clear
Got my team beside me, no room for fear
Walking through the streets, beats inside my head
Every step I take, closer to the bread
People passing by, they don't understand
Building up my future with my own two hands
[chorus]
This is my life, and I'm aiming for the top
Never gonna quit, no, I'm never gonna stop
Through the highs and lows, I'mma keep it real
Living out my dreams with this mic and a deal
"""
]
],
inputs=[genre_txt, lyrics_txt],
outputs=[music_out],
cache_examples=True,
cache_mode="eager",
fn=infer
)
submit_btn.click(
fn=infer,
inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens],
outputs=[music_out]
)
demo.queue().launch(show_error=True) |