File size: 9,870 Bytes
6c02161
b2d8a8c
f46ec29
b2d8a8c
 
6df3b9e
60eb847
8cd422c
b2d8a8c
6b78ccb
 
 
 
 
 
 
98d025d
472d32d
 
 
c022c1a
472d32d
 
c022c1a
472d32d
c022c1a
 
 
9df60ba
c022c1a
 
 
 
9df60ba
472d32d
 
 
 
 
 
 
 
22e7225
6b78ccb
 
f46ec29
01bd804
 
 
 
 
f46ec29
6b78ccb
01bd804
 
6b78ccb
 
 
01bd804
 
 
 
 
6b78ccb
01bd804
6b78ccb
01bd804
f46ec29
01bd804
 
 
 
 
 
 
22e7225
01bd804
 
 
472d32d
5ae11fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01bd804
 
 
 
 
 
 
 
 
c022c1a
01bd804
 
 
 
 
 
 
 
 
 
 
 
f46ec29
01bd804
 
f46ec29
01bd804
472d32d
01bd804
 
 
 
c022c1a
01bd804
 
 
 
 
 
 
c022c1a
01bd804
 
 
 
 
 
f46ec29
01bd804
 
 
 
c022c1a
01bd804
 
 
 
 
f46ec29
01bd804
 
 
 
 
 
 
 
 
 
 
 
 
 
f46ec29
01bd804
 
 
 
 
472d32d
01bd804
 
 
472d32d
01bd804
 
 
 
 
 
 
 
f46ec29
01bd804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f46ec29
01bd804
 
 
 
 
 
 
f46ec29
01bd804
472d32d
01bd804
 
 
725074b
01bd804
 
 
 
 
 
 
b2d8a8c
01bd804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cd422c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01bd804
 
 
 
c022c1a
725074b
01bd804
 
 
725074b
01bd804
0c9c094
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import gradio as gr
import subprocess
import os
import shutil
import tempfile
import spaces
import sys
import re

print("Installing flash-attn...")
# Install flash attention
subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)

from huggingface_hub import snapshot_download 

# Create xcodec_mini_infer folder
folder_path = './xcodec_mini_infer'

# Create the folder if it doesn't exist
if not os.path.exists(folder_path):
    os.mkdir(folder_path)
    print(f"Folder created at: {folder_path}")
else:
    print(f"Folder already exists at: {folder_path}")

snapshot_download(
    repo_id = "m-a-p/xcodec_mini_infer",
    local_dir = "./xcodec_mini_infer"
)

# Change to the "inference" directory
inference_dir = "."
try:
    os.chdir(inference_dir)
    print(f"Changed working directory to: {os.getcwd()}")
except FileNotFoundError:
    print(f"Directory not found: {inference_dir}")
    exit(1)

sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))

import gradio as gr
import os
import shutil
import tempfile
import spaces
import torch
import numpy as np
from pathlib import Path
from huggingface_hub import snapshot_download
from omegaconf import OmegaConf
import torchaudio
import soundfile as sf
from functools import lru_cache
from concurrent.futures import ThreadPoolExecutor
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessorList
from models.soundstream_hubert_new import SoundStream
from vocoder import build_codec_model
from mmtokenizer import _MMSentencePieceTokenizer
from codecmanipulator import CodecManipulator

# --------------------------
# Configuration Constants
# --------------------------
MODEL_DIR = Path("./xcodec_mini_infer")
OUTPUT_DIR = Path("./output")
DEVICE = "cuda:0"
TORCH_DTYPE = torch.float16
MAX_CONTEXT = 16384 - 3000 - 1
MAX_SEQ_LEN = 16384

# --------------------------
# Preload Models with KV Cache Initialization
# --------------------------

# Text generation model with KV cache support
model = AutoModelForCausalLM.from_pretrained(
    "m-a-p/YuE-s1-7B-anneal-en-cot",
    torch_dtype=TORCH_DTYPE,
    attn_implementation="flash_attention_2",
    use_cache=True  # Enable KV caching
).to(DEVICE).eval()

# Tokenizer and codec tools
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
codectool = CodecManipulator("xcodec", 0, 1)

# Audio codec model
model_config = OmegaConf.load(MODEL_DIR/"final_ckpt/config.yaml")
codec_model = SoundStream(**model_config.generator.config).to(DEVICE)
codec_model.load_state_dict(
    torch.load(MODEL_DIR/"final_ckpt/ckpt_00360000.pth", map_location='cpu')['codec_model']
)
codec_model.eval()

# Vocoders
vocal_decoder, inst_decoder = build_codec_model(
    MODEL_DIR/"decoders/config.yaml",
    MODEL_DIR/"decoders/decoder_131000.pth",
    MODEL_DIR/"decoders/decoder_151000.pth"
)

# --------------------------
# Optimized Generation with KV Cache Management
# --------------------------
class KVCacheManager:
    def __init__(self, model):
        self.model = model
        self.past_key_values = None
        self.current_length = 0

    def reset(self):
        self.past_key_values = None
        self.current_length = 0

    def generate_with_cache(self, input_ids, generation_config):
        outputs = self.model(
            input_ids,
            past_key_values=self.past_key_values,
            use_cache=True,
            output_hidden_states=False,
            return_dict=True
        )
        
        self.past_key_values = outputs.past_key_values
        self.current_length += input_ids.shape[1]
        
        return outputs.logits

def split_lyrics(lyrics: str):
    pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
    segments = re.findall(pattern, lyrics, re.DOTALL)
    return [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]

@torch.inference_mode()
def process_audio_batch(codec_ids, decoder, sample_rate=44100):
    decoded = codec_model.decode(
        torch.as_tensor(codec_ids.astype(np.int16), dtype=torch.long)
        .unsqueeze(0).permute(1, 0, 2).to(DEVICE)
    )
    return decoded.cpu().squeeze(0)

# --------------------------
# Core Generation Logic with KV Cache
# --------------------------
def generate_music(genre_txt, lyrics_txt, num_segments=2, max_new_tokens=2000):
    # Initialize KV cache manager
    cache_manager = KVCacheManager(model)
    
    # Preprocess inputs
    genres = genre_txt.strip()
    structured_lyrics = split_lyrics(lyrics_txt+"\n")
    prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{''.join(structured_lyrics)}"] + structured_lyrics

    # Generation loop with KV cache
    all_generated = []
    for i in range(1, min(num_segments+1, len(prompt_texts))):
        input_ids = prepare_inputs(prompt_texts, i, all_generated)
        input_ids = input_ids.to(DEVICE)
        
        # Generate segment with KV cache
        segment_output = []
        for _ in range(max_new_tokens):
            logits = cache_manager.generate_with_cache(input_ids, None)
            
            # Sampling logic
            probs = torch.nn.functional.softmax(logits[:, -1], dim=-1)
            next_token = torch.multinomial(probs, num_samples=1)
            
            segment_output.append(next_token.item())
            input_ids = next_token.unsqueeze(0)
            
            if next_token == mmtokenizer.eoa:
                break
        
        all_generated.extend(segment_output)
        
        # Prevent cache overflow
        if cache_manager.current_length > MAX_SEQ_LEN * 0.8:
            cache_manager.reset()

    # Process outputs
    ids = np.array(all_generated)
    vocals, instrumentals = process_outputs(ids)
    
    # Parallel audio processing
    with ThreadPoolExecutor() as executor:
        vocal_future = executor.submit(process_audio_batch, vocals, vocal_decoder)
        inst_future = executor.submit(process_audio_batch, instrumentals, inst_decoder)
        vocal_wav = vocal_future.result()
        inst_wav = inst_future.result()

    # Mix and post-process
    mixed = (vocal_wav + inst_wav) / 2
    final_path = OUTPUT_DIR/"final_output.mp3"
    save_audio(mixed, final_path, 44100)
    return str(final_path)

# --------------------------
# Optimized Helper Functions
# --------------------------
@lru_cache(maxsize=10)
def prepare_inputs(prompt_texts, index, previous_tokens):
    current_prompt = mmtokenizer.tokenize(prompt_texts[index])
    return torch.tensor([previous_tokens + current_prompt], dtype=torch.long, device=DEVICE)

def process_outputs(ids):
    soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
    eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()
    
    vocals = []
    instrumentals = []
    for i in range(len(soa_idx)):
        codec_ids = ids[soa_idx[i]+1:eoa_idx[i]]
        codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
        vocals.append(codectool.ids2npy(codec_ids[::2]))
        instrumentals.append(codectool.ids2npy(codec_ids[1::2]))
    
    return np.concatenate(vocals, axis=1), np.concatenate(instrumentals, axis=1)

def save_audio(wav, path, sr):
    wav = wav.clamp(-0.99, 0.99)
    torchaudio.save(path, wav.cpu(), sr, encoding='PCM_S', bits_per_sample=16)

# --------------------------
# Gradio Interface
# --------------------------
@spaces.GPU(duration=120)
def infer(genre, lyrics, num_segments=2, max_tokens=2000):
    with tempfile.TemporaryDirectory() as tmpdir:
        return generate_music(genre, lyrics, num_segments, max_tokens)

# Gradio UI
with gr.Blocks() as demo:
    gr.Markdown("# YuE Music Generator with KV Cache Optimization")
    with gr.Row():
        with gr.Column():
            genre_txt = gr.Textbox(label="Genre", placeholder="e.g., pop electronic female vocal")
            lyrics_txt = gr.Textbox(label="Lyrics", lines=8, 
                                  placeholder="""[verse]\nYour lyrics here...""")
            num_segments = gr.Slider(1, 10, value=2, label="Song Segments")
            max_tokens = gr.Slider(100, 3000, value=1000, step=100, 
                                 label="Max Tokens per Segment (100≈1sec)")
            submit_btn = gr.Button("Generate Music")
        with gr.Column():
            audio_output = gr.Audio(label="Generated Music", interactive=False)
    
    gr.Examples(
        examples=[
            ["pop rock male vocal", """[verse]
Woke up in the morning, sun is shining bright
Chasing all my dreams, gotta get my mind right
City lights are fading, but my vision's clear
Got my team beside me, no room for fear
Walking through the streets, beats inside my head
Every step I take, closer to the bread
People passing by, they don't understand
Building up my future with my own two hands

[chorus]
This is my life, and I'm aiming for the top
Never gonna quit, no, I'm never gonna stop
Through the highs and lows, I'mma keep it real
Living out my dreams with this mic and a deal"""],
            ["electronic dance synth female", """
[verse]
In the quiet of the evening, shadows start to fall
Whispers of the night wind echo through the hall
Lost within the silence, I hear your gentle voice
Guiding me back homeward, making my heart rejoice

[chorus]
Don't let this moment fade, hold me close tonight
With you here beside me, everything's alright
Can't imagine life alone, don't want to let you go
Stay with me forever, let our love just flow
"""]
        ],
        inputs=[genre_txt, lyrics_txt],
        outputs=audio_output
    )
    
    submit_btn.click(
        fn=infer,
        inputs=[genre_txt, lyrics_txt, num_segments, max_tokens],
        outputs=audio_output
    )

demo.queue().launch()